[ncl-talk] fatal:["NclFile.c":2100]:Subscript out of range, error in subscript #0 fatal:["Execute.c":8635]:Execute: Error occurred at or near line 20 fatal:["Execute.c":8635]:Execute: Error occurred at or near line 75
Rahpeni Fajarianti
rahpenifajarianti at gmail.com
Mon Dec 16 04:26:33 MST 2019
Ok, thanks!
On Sun, Dec 15, 2019 at 10:52 PM Rick Brownrigg <brownrig at ucar.edu> wrote:
> Well, its virtually impossible to tell from the information given. But I
> will say that the error message means exactly what it says -- an attempt to
> index into an array beyond its dimensions. Try putting some
> print/printVarSummary statements before the call to read_rename at line 75
> (or perhaps even better, inside of read_rename before line #20, since there
> are several calls to this function); you'll likely see the problem then.
> Recall that NCL uses zero-based indexing, so for an array of dimension N,
> valid indices are 0...(N-1)
>
> Rick
>
>
> On Sun, Dec 15, 2019 at 7:38 AM Rahpeni Fajarianti via ncl-talk <
> ncl-talk at ucar.edu> wrote:
>
>> Halo NCL, i have a problem when i run the data like this
>> fatal:["NclFile.c":2100]:Subscript out of range, error in subscript #0
>> fatal:["Execute.c":8635]:Execute: Error occurred at or near line 20
>> fatal:["Execute.c":8635]:Execute: Error occurred at or near line 75
>> Thanks for help!
>>
>> This is my script:
>> ncl 0> load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/diagnostics_cam.ncl"
>> ncl 1> ;******************************************************
>> ncl 2> ;
>> ncl 3> ; mjoclivar_14.ncl
>> ncl 4> ;
>> ncl 5> ;***********************************************************
>> ncl 6> ; Combined EOFs
>> ncl 7> ; Latest Update: July, 2016: Eun-Pa Lim; Bureau of Meteorology,
>> Australia
>> ncl 8> ;***********************************************************
>> ncl 9> ;;
>> ncl 10> ;; The following are automatically loaded from 6.2.0 onward
>> ncl 11> ;;load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
>> ncl 12> ;;load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"
>> ncl 13> ;;load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl"
>> ncl 14>
>> ncl 15> undef("read_rename")
>> ncl 16> function read_rename(f[1]:file, varName[1]:string \
>> ncl 16> ,iStrt[1]:integer, iLast[1]:integer \
>> ncl 16> ,latS[1]:numeric , latN[1]:numeric )
>> ncl 17> ; Utility to force specific named dimensions
>> ncl 18> ; This is done for historical reasons (convenience)
>> ncl 19> begin
>> ncl 20> work = f->$varName$(iStrt:iLast,{latS:latN},:) ;
>> (time,lat,lon)
>> ncl 21> work!0 = "time" ; CAM
>> model names
>> ncl 22> work!1 = "lat"
>> ncl 23> work!2 = "lon"
>> ncl 24> return(work)
>> ncl 25> end
>> ncl 26> ; =========================> MAIN
>> <==============================
>> ncl 27> begin
>> ncl 28> neof = 2
>> ncl 29>
>> ncl 30> latS = -15
>> ncl 31> latN = 15
>> ncl 32>
>> ncl 33> ymdStrt = 20180101 ; start yyyymmdd
>> ncl 34> ymdLast = 20181231 ; last
>> ncl 35>
>> ncl 36> yrStrt = ymdStrt/10000
>> ncl 37> yrLast = ymdLast/10000
>> ncl 38>
>> ncl 39> pltDir = "/home/peni/" ; plot
>> directory
>> ncl 40> pltType = "png"
>> ncl 41> pltName = "mjoclivar"
>> ncl 42>
>> ncl 43> diri = "/home/peni/" ; input
>> directory
>> ncl 44>
>> ncl 45> filolr = "anomolr.nc"
>> ncl 46> filu200 = "uanom2.nc"
>> ncl 47> filu850 = "uanom.nc"
>> ncl 48>
>> ncl 49> ;************************************************
>> ncl 50> ; create BandPass Filter
>> ncl 51> ;************************************************
>> ncl 52> ihp = 2 ; bpf=>band pass filter
>> ncl 53> nWgt = 201
>> ncl 54> sigma = 1.0 ; Lanczos sigma
>> ncl 55> fca = 1./100.
>> ncl 56> fcb = 1./20.
>> ncl 57> wgt = filwgts_lanczos (nWgt, ihp, fca, fcb, sigma )
>> ncl 58>
>> ncl 59> ;***********************************************************
>> ncl 60> ; Find the indices corresponding to the start/end times
>> ncl 61> ;***********************************************************
>> ncl 62> f = addfile (diri+filolr , "r")
>> ncl 63> TIME = f->time ; days since ...
>> ncl 64>
>> )ncl 65> YMD = cd_calendar(TIME, -2) ; entire (time,6)
>> ncl 66>
>> tncl 67> iStrt = ind(YMD.eq.ymdStrt) ; index start
>> ncl 68> iLast = ind(YMD.eq.ymdLast) ; index last
>> ncl 69> delete([/ TIME, YMD /])
>> ncl 70>
>> nncl 71> ;***********************************************************
>> ncl 72> ; Read anomalies
>> ncl 73> ;***********************************************************
>> ncl 74>
>> ncl 75> work = read_rename(f,"anomolr",iStrt,iLast,latS,latN) ;
>> (time,lat,lon)
>> ncl 76> OLR = dim_avg_n_Wrap(work, 1) ;
>> (time,lon)
>> ncl 77>
>> ncl 78> f = addfile (diri+filu850 , "r")
>> ncl 79> work = read_rename(f,"uanom",iStrt,iLast,latS,latN) ;
>> (time,lat,lon)
>> ncl 80> U850 = dim_avg_n_Wrap(work, 1) ; (time,lon)
>> ncl 81>
>> ncl 82> f = addfile (diri+filu200 , "r")
>> ncl 83> work = read_rename(f,"uanom2",iStrt,iLast,latS,latN) ;
>> (time,lat,lon)
>> ncl 84> U200 = dim_avg_n_Wrap(work, 1) ; (time,lon)
>> ncl 85>
>> ^ncl 86> dimw = dimsizes( work )
>> ncl 87> ntim = dimw(0)
>> ncl 88> nlat = dimw(1)
>> ncl 89> mlon = dimw(2)
>> ncl 90> delete(work)
>> ncl 91>
>> ncl 92> lon = OLR&lon
>> ncl 93> time = OLR&time
>> ncl 94> date = cd_calendar(time, -2) ; yyyymmdd
>> ncl 95>
>> ncl 96> ;************************************************
>> ncl 97> ; Apply the band pass filter to the original anomalies
>> ncl 98> ;************************************************
>> ncl 99> olr = wgt_runave_n_Wrap ( OLR, wgt, 0, 0) ; (time,lon)
>> ncl 100> u850 = wgt_runave_n_Wrap (U850, wgt, 0, 0)
>> ncl 101> u200 = wgt_runave_n_Wrap (U200, wgt, 0, 0)
>> ncl 102>
>> ancl 103> ;************************************************
>> ncl 104> ; remove temporal means of band pass series: *not* necessary
>> ncl 105> ;************************************************
>> ncl 106> olr = dim_rmvmean_n( olr, 0) ; (time,lon)
>> ncl 107> u850 = dim_rmvmean_n(u850, 0)
>> ncl 108> u200 = dim_rmvmean_n(u200, 0)
>> ncl 109>
>> ;ncl 110> ;************************************************
>> ncl 111> ; Compute the temporal variance at each lon
>> ncl 112> ;************************************************
>> ncl 113> var_olr = dim_variance_n_Wrap( olr, 0) ; (lon)
>> ncl 114> var_u850 = dim_variance_n_Wrap(u850, 0)
>> ncl 115> var_u200 = dim_variance_n_Wrap(u200, 0)
>> ncl 116>
>> incl 117> ;************************************************
>> ncl 118> ; Compute the zonal mean of the temporal variance
>> ncl 119> ;************************************************
>> ncl 120> zavg_var_olr = dim_avg_n_Wrap( var_olr , 0)
>> ncl 121> zavg_var_u850 = dim_avg_n_Wrap( var_u850, 0)
>> ncl 122> zavg_var_u200 = dim_avg_n_Wrap( var_u200, 0)
>> ncl 123>
>> *ncl 124> ;************************************************
>> ncl 125> ; Normalize by sqrt(avg_var*)
>> ncl 126> ;************************************************
>> ncl 127> olr = olr/sqrt(zavg_var_olr ) ; (time,lon)
>> ncl 128> u850 = u850/sqrt(zavg_var_u850)
>> ncl 129> u200 = u200/sqrt(zavg_var_u200)
>> ncl 130>
>> ncl 131> ;************************************************
>> ncl 132> ; Combine the normalized data into one variable
>> ncl 133> ;************************************************
>> ncl 134> cdata = new ( (/3*mlon,ntim/), typeof(olr),
>> getFillValue(olr))
>> ncl 135> do ml=0,mlon-1
>> ncl 136> cdata(ml ,:) = (/ olr(:,ml) /)
>> ncl 137> cdata(ml+ mlon,:) = (/ u850(:,ml) /)
>> ncl 138> cdata(ml+2*mlon,:) = (/ u200(:,ml) /)
>> ncl 139> end do
>> ncl 140>
>> =ncl 141> ;************************************************
>> ncl 142> ; Compute **combined** EOF; Sign of EOF is arbitrary
>> ncl 143> ;************************************************
>> ncl 144> eof_cdata = eofunc(cdata , neof, False) ;
>> (neof,3*mlon)
>> ncl 145> print("==============")
>> ncl 146> printVarSummary(eof_cdata)
>> ncl 147> printMinMax(eof_cdata, True)
>> ncl 148>
>> )ncl 149> eof_ts_cdata = eofunc_ts(cdata,eof_cdata,False) ;
>> (neof,3*ntim)
>> ncl 150> print("==============")
>> ncl 151> printVarSummary(eof_ts_cdata)
>> ncl 152> printMinMax(eof_ts_cdata, True)
>> ncl 153>
>> ncl 154> ;************************************************
>> ncl 155> ; For clarity, explicitly extract each variable. Create time
>> series
>> ncl 156> ;************************************************
>> ncl 157>
>> tncl 158> nvar = 3 ; "olr", "u850", "u200"
>> ncl 159> ceof = new( (/nvar,neof,mlon/), typeof(cdata),
>> getFillValue(cdata))
>> ncl 160>
>> dncl 161> do n=0,neof-1
>> ncl 162> ceof(0,n,:) = eof_cdata(n,0:mlon-1) ; olr
>> ncl 163> ceof(1,n,:) = eof_cdata(n,mlon:2*mlon-1) ; u850
>> ncl 164> ceof(2,n,:) = eof_cdata(n,2*mlon:) ; u200
>> ncl 165> end do
>> ncl 166>
>> ncl 167> ceof!0 = "var"
>> ncl 168> ceof!1 = "eof"
>> ncl 169> ceof!2 = "lon"
>> ncl 170> ceof&lon = olr&lon
>> ncl 171>
>> ncl 172> ceof_ts = new( (/nvar,neof,ntim/), typeof(cdata),
>> getFillValue(cdata))
>> ncl 173> ceof_ts(0,:,:) = eofunc_ts_Wrap(
>> olr(lon|:,time|:),ceof(0,:,:),False) ; (0,neof,ntim)
>> ncl 174> ceof_ts(1,:,:) =
>> eofunc_ts_Wrap(u850(lon|:,time|:),ceof(1,:,:),False) ; (1,neof,ntim)
>> ncl 175> ceof_ts(2,:,:) =
>> eofunc_ts_Wrap(u200(lon|:,time|:),ceof(2,:,:),False) ; (2,neof,ntim)
>> ncl 176>
>> ncl 177> ;**********************************************t*
>> ncl 178> ; Add code contributed by Marcus N. Morgan, Florida Institute of
>> Technology; Feb 2015
>> ncl 179> ; Calculate % variance (pcv_ )accounted for by OLR, U850 and U200
>> ncl 180> ;************************************************
>> ncl 181>
>> ncl 182> pcv_eof_olr = new(neof,typeof(ceof))
>> ncl 183> pcv_eof_u850 = new(neof,typeof(ceof))
>> ncl 184> pcv_eof_u200 = new(neof,typeof(ceof))
>> ncl 185>
>> ncl 186> do n=0,neof-1
>> ncl 187> pcv_eof_olr(n) = avg((ceof(0,n,:)*sqrt(ceof at eval
>> (n)))^2)*100
>> ncl 188> pcv_eof_u850(n) = avg((ceof(1,n,:)*sqrt(ceof at eval
>> (n)))^2)*100
>> ncl 189> pcv_eof_u200(n) = avg((ceof(2,n,:)*sqrt(ceof at eval
>> (n)))^2)*100
>> ncl 190> ;;print("pcv: neof="+(n+1)+": "+pcv_eof_olr(n)+"
>> "+pcv_eof_u850(n)+" "+pcv_eof_u200(n))
>> ncl 191> end do
>> ncl 192>
>> ncl 193> ;************************************************
>> ncl 194> ; Change sign of EOFs for spatial structures of PC1 and PC2
>> ncl 195> ; to represent convection over the tropical Indian Ocean and the
>> tropical western Pacific Ocean, respectively
>> ncl 196> ; (Ad hoc approach)
>> ncl 197> ;************************************************
>> ncl 198>
>> ncl 199> imax_olr_eof1 = maxind(ceof(0,0,:))
>> ncl 200> imax_olr_eof2 = maxind(ceof(0,1,:))
>> ncl 201>
>> )ncl 202> lonmax_eof1 = ceof&lon(imax_olr_eof1) ; longitude of max
>> value (i.e. suppressed convection)
>> ncl 203> lonmax_eof2 = ceof&lon(imax_olr_eof2)
>> ncl 204>
>> ncl 205> if (lonmax_eof1.ge.60 .and. lonmax_eof1.lt.180) then ; Change
>> the sign of EOF1
>> ncl 206> ceof(:,0,:) = -ceof(:,0,:) ; if OLR
>> is positive
>> ncl 207> ceof_ts(:,0,:) = -ceof_ts(:,0,:) ; over
>> the tropical Indian Ocean
>> ncl 208> eof_cdata(0,:) = -eof_cdata(0,:)
>> ncl 209> eof_ts_cdata(0,:) = -eof_ts_cdata(0,:)
>> ncl 210> end if
>> ncl 211>
>> ncl 212> if (lonmax_eof2.ge.120 .and. lonmax_eof2.lt.180) then ;
>> Change the sign of EOF2
>> ncl 213> ceof(:,1,:) = -ceof(:,1,:) ; if
>> OLR is positive
>> ncl 214> ceof_ts(:,1,:) = -ceof_ts(:,1,:) ; over
>> the tropical western Pacific Ocean
>> ncl 215> eof_cdata(1,:) = -eof_cdata(1,:)
>> ncl 216> eof_ts_cdata(1,:) = -eof_ts_cdata(1,:)
>> ncl 217> end if
>> ncl 218>
>> ncl 219> print("==============")
>> ncl 220> printVarSummary(eof_cdata)
>> ncl 221> printMinMax(eof_cdata, True)
>> ncl 222>
>> ncl 223> ;************************************************
>> ncl 224> ; Compute cross correlation of each variable's EOF time series
>> at zero-lag
>> ncl 225> ;************************************************
>> ncl 226> r_olr_u850 = escorc(ceof_ts(0,:,:) , ceof_ts(1,:,:) ) ;
>> (neof)
>> ncl 227> r_olr_u200 = escorc(ceof_ts(0,:,:) , ceof_ts(2,:,:) )
>> ncl 228> r_u850_u200 = escorc(ceof_ts(1,:,:) , ceof_ts(2,:,:) )
>> ncl 229>
>> sncl 230> print("==============")
>> ncl 231> do n=0,neof-1
>> ncl 232> print("neof="+n \
>> ncl 232> +" r_olr_u850=" +sprintf("%4.3f",r_olr_u850(n)) \
>> ncl 232> +" r_olr_u200=" +sprintf("%4.3f",r_olr_u200(n)) \
>> ncl 232> +" r_u850_u200="+sprintf("%4.3f",r_u850_u200(n)) )
>> ncl 233> end do
>> ncl 234> print("==============")
>> ncl 235>
>> ncl 236> ;************************************************
>> ncl 237> ; Compute cross correlation of the multivariate EOF; EOF 1 vs
>> EOF 2
>> ncl 238> ;************************************************
>> ncl 239>
>> ncl 240> mxlag = 25
>> ncl 241> rlag_01 = esccr(eof_ts_cdata(0,:),eof_ts_cdata(1,:), mxlag)
>> ; (N,mxlag+1)
>> ncl 242> rlag_10 = esccr(eof_ts_cdata(1,:),eof_ts_cdata(0,:), mxlag)
>> ; (N,mxlag+1)
>> ncl 243> ccr_12 = new ( (/2*mxlag+1/), float)
>> ncl 244>
>> cncl 245> ccr_12(mxlag:) = rlag_10(0:mxlag)
>> ncl 246> ccr_12(0:mxlag) = rlag_01(::-1) ; reverse order
>> ncl 247> ;;print(ccr_12)
>> ncl 248>
>> ncl 249>
>> ncl 250> ;************************************************
>> ncl 251> ; Normalize the multivariate EOF 1&2 component time series
>> ncl 252> ; Compute (PC1^2+PC2^2): values > 1 indicate "strong" periods
>> ncl 253> ;************************************************
>> ncl 254> eof_ts_cdata(0,:) = eof_ts_cdata(0,:)/stddev(eof_ts_cdata(0,:))
>> ncl 255> eof_ts_cdata(1,:) = eof_ts_cdata(1,:)/stddev(eof_ts_cdata(1,:))
>> ode \
>> , rts at xyLineThicknesses , rts at gsnLncl 256>
>> encl 257> mjo_ts_index = eof_ts_cdata(0,:)^2 + eof_ts_cdata(1,:)^2
>> ncl 258> mjo_ts_index_smt = runave(mjo_ts_index, 91, 0) ; 91-day
>> running mean
>> ncl 259>
>> ncl 260> nGood = num(.not.ismissing(mjo_ts_index)) ; #
>> non-missing
>> ncl 261> nStrong = num(mjo_ts_index .ge. 1.0)
>> ncl 262> print("nGood="+nGood+" nStrong="+nStrong+"
>> nOther="+(nGood-nStrong))
>> ncl 263>
>> rncl 264> ;************************************************
>> ncl 265> ; Write PC results to netCDF for use in another example.
>> ncl 266> ;************************************************
>> ncl 267> mjo_ts_index!0 = "time"
>> ncl 268> mjo_ts_index&time = time
>> ncl 269> mjo_ts_index at long_name = "MJO PC INDEX"
>> ncl 270> mjo_ts_index at info = "(PC1^2 + PC2^2)"
>> ncl 271>
>> ncl 272> PC1 = eof_ts_cdata(0,:)
>> ncl 273> PC1!0 = "time"
>> ncl 274> PC1&time = time
>> ncl 275> PC1 at long_name = "PC1"
>> ncl 276> PC1 at info = "PC1/stddev(PC1)"
>> ncl 277>
>> ncl 278> PC2 = eof_ts_cdata(1,:)
>> ncl 279> PC2!0 = "time"
>> ncl 280> PC2&time = time
>> ncl 281> PC2 at long_name = "PC2"
>> ncl 282> PC2 at info = "PC2/stddev(PC2)"
>> ncl 283>
>> ncl 284> diro = "./"
>> ncl 285> filo = "MJO_PC_INDEX.nc"
>> ncl 286> system("/bin/rm -f "+diro+filo) ; remove any pre-existing
>> file
>> ncl 287> ncdf = addfile(diro+filo,"c") ; open output netCDF file
>> ncl 288> ; make time an UNLIMITED
>> dimension
>> ncl 289> filedimdef(ncdf,"time",-1,True) ; recommended for most
>> applications
>> ncl 290> ; output variables directly
>> ncl 291> ncdf->MJO_INDEX = mjo_ts_index
>> ncl 292> ncdf->PC1 = PC1
>> ncl 293> ncdf->PC2 = PC2
>> ncl 294>
>> ncl 295> ;------------------------------------------------------------
>> ncl 296> ; PLOTS
>> ncl 297> ;------------------------------------------------------------
>> ncl 298>
>> ncl 299> yyyymmdd = cd_calendar(time, -2)
>> ncl 300> yrfrac = yyyymmdd_to_yyyyfrac(yyyymmdd, 0.0)
>> ncl 301> delete([/ yrfrac at long_name, lon at long_name /])
>> ncl 302>
>> ncl 303> day = ispan(-mxlag, mxlag, 1)
>> ncl 304> ;day at long_name = "lag (day)"
>> ncl 305>
>> ncl 306> pltPath = pltDir+pltName
>> ncl 307>
>> ncl 308> wks = gsn_open_wks(pltType,pltPath)
>> ncl 309> gsn_define_colormap(wks,"default")
>> ncl 310> plot = new(3,graphic)
>> ncl 311>
>> ncl 312> ;************************************************
>> ncl 313> ; Multivariate EOF plots
>> ncl 314> ;************************************************
>> ncl 315> rts = True
>> ncl 316> rts at gsnDraw = False ; don't draw yet
>> ncl 317> rts at gsnFrame = False ; don't advance frame yet
>> ncl 318> rts at gsnScale = True ; force text scaling
>>
>> ncl 319>
>> ncl 320> rts at vpHeightF = 0.40 ; Changes the aspect ratio
>> ncl 321> rts at vpWidthF = 0.85
>> ncl 322> rts at vpXF = 0.10 ; change start locations
>> ncl 323> rts at vpYF = 0.75 ; the plot
>> ncl 324> rts at xyLineThicknesses = (/2, 2, 2/)
>> ncl 325> rts at xyLineColors = (/"black","red","blue"/)
>> ncl 326> rts at gsnYRefLine = 0. ; reference line
>>
>> ncl 327> rts at trXMaxF = max(lon)
>> ncl 328> rts at trXMinF = min(lon)
>> ncl 329>
>> ncl 330> rts at pmLegendDisplayMode = "Always" ; turn on
>> legend
>> ncl 331> rts at pmLegendSide = "Top" ; Change
>> location of
>> ncl 332> rts at pmLegendParallelPosF = 1.16 ; move units
>> right
>> ncl 333> rts at pmLegendOrthogonalPosF = -0.50 ; move units
>> down
>> ncl 334> rts at pmLegendWidthF = 0.15 ; Change
>> width and
>> ncl 335> rts at pmLegendHeightF = 0.15 ; height of
>> legend.
>> ncl 336> rts at lgLabelFontHeightF = 0.0175
>> ncl 337>
>> ncl 338>
>> ncl 339> rtsP = True ; modify the
>> panel plot
>> ncl 340> ; rtsP at gsnMaximize = True ; large
>> format
>> ncl 341> rtsP at gsnPanelMainString = "Multivariate EOF: 15S-15N:
>> "+yrStrt+"-"+yrLast
>> ncl 342>
>> ncl 343> do n=0,neof-1
>> ncl 344> rts at xyExplicitLegendLabels = (/"OLR: "+sprintf("%4.1f",
>> pcv_eof_u200(n)) +"%" \
>> ncl 344> ,"U850: "+sprintf("%4.1f",
>> pcv_eof_u850(n))+"%" \
>> ncl 344> ,"U200: "+sprintf("%4.1f",
>> pcv_eof_olr(n))+"%" /)
>> ncl 345> rts at gsnLeftString = "EOF "+(n+1)
>> ncl 346> rts at gsnRightString = sprintf("%3.1f",ceof at pcvar(n)) +"%"
>> ncl 347> plot(n) = gsn_csm_xy (wks,lon,ceof(:,n,:),rts)
>> ncl 348> end do
>> ncl 349> gsn_panel(wks,plot(0:1),(/2,1/),rtsP) ; now draw as one
>> plot
>> ncl 350>
>> ncl 351> ;-----------------------------------------
>> ncl 352> ; The following doesn't work with some older versions of NCL
>> ncl 353> ; With old versions, the user must delete each individually.
>> ncl 354> ;-----------------------------------------
>> ncl 355> delete([/ rts at xyExplicitLegendLabels, rts at pmLegendDisplayMode
>> \
>> ncl 355> , rts at xyLineThicknesses , rts at gsnLeftString
>> \
>> ncl 355> , rts at gsnRightString , rts at xyLineColors
>> \
>> ncl 355> , rts at trXMaxF , rts at trXMinF
>> /] )
>> ncl 356>
>> ncl 357> lag = ispan(-mxlag,mxlag,1)
>> ncl 358> lag at long_name = "lag (days)"
>> ncl 359>
>> ncl 360> plot(0) = gsn_csm_xy (wks, lag ,ccr_12,rts)
>> ncl 361> rtsP at gsnPanelMainString = "Cross Correlation: Multivariate
>> EOF: 15S-15N: " \
>> ncl 361> + yrStrt+"-"+yrLast
>> ncl 362> rtsP at gsnPaperOrientation = "portrait" ; force
>> portrait
>> ncl 363> gsn_panel(wks,plot(0),(/1,1/),rtsP) ; now draw as one plot
>> ncl 364>
>> ncl 365> ;************************************************
>> ncl 366> ; MJO "strong" index
>> ncl 367> ;************************************************
>> ncl 368> rts at gsnYRefLine = 1.0
>> ncl 369> rts at gsnYRefLineColor = "black"
>> ncl 370> rts at xyMonoDashPattern = True
>> ncl 371> rts at xyLineColors = (/"black", "blue"/)
>> ncl 372> rts at xyLineThicknesses = (/1, 2/)
>> ncl 373> rts at pmLegendDisplayMode = "Always" ; turn on
>> legend
>> ncl 374> rts at pmLegendWidthF = 0.12 ; Change
>> width and
>> ncl 375> rts at pmLegendHeightF = 0.10 ; height of
>> legend.
>> ncl 376> rts at pmLegendParallelPosF = 0.86 ; move units
>> right
>> ncl 377> rts at pmLegendOrthogonalPosF = -0.40 ; move units
>> down
>> ncl 378> rts at xyExplicitLegendLabels = (/"daily", "91-day runavg" /)
>> ncl 379>
>> ncl 380> mjo_ind_plt = new ( (/2,ntim/), typeof(mjo_ts_index))
>> ncl 381> mjo_ind_plt(0,:) = mjo_ts_index
>> ncl 382> mjo_ind_plt(1,:) = (/ mjo_ts_index_smt /)
>> ncl 383> plot(0) = gsn_csm_xy(wks, yrfrac,mjo_ind_plt,rts)
>> ncl 384>
>> ncl 385> rtsP at gsnPanelMainString = "MJO Index: (PC1^2+ PC2^2) :
>> 15S-15N: "+yrStrt+"-"+yrLast
>> ncl 386> gsn_panel(wks,plot(0),(/1,1/),rtsP) ; now draw as one plot
>> ncl 387>
>> ncl 388> end
>> _______________________________________________
>> ncl-talk mailing list
>> ncl-talk at ucar.edu
>> List instructions, subscriber options, unsubscribe:
>> http://mailman.ucar.edu/mailman/listinfo/ncl-talk
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mailman.ucar.edu/pipermail/ncl-talk/attachments/20191216/ae0fcb81/attachment.html>
More information about the ncl-talk
mailing list