[ES_JOBS_NET] FW: ECMWF Job for: Scientist for Machine Learning, Grade A2, Ref.: VN20-22. Closing date: 31 January 2021

Julie Palmer Julie.Palmer at ecmwf.int
Tue Jan 19 12:57:15 MST 2021


Please share this job please.
Thank you,
Julie Palmer

Scientist for Machine Learning





1.    Position information


Vacancy No.: VN20-22

Department: Computing Department



Grade: A2

Section: HPC/Applications Team



Job Ref. No.:  STF-PS/20-22

Reports to: AI4Copernicus ECMWF Project Manager

Publication Date: 16 December 2020



Closing Date: 31 January 2021



2.    About ECMWF

ECMWF is the leading centre for global, medium-range weather predictions and is the host of the largest archive of weather data in the world. ECMWF is both a research institute and a 24/7 operational service, producing and disseminating numerical weather predictions to its Member States. ECMWF has also been entrusted to operate the Copernicus Atmosphere Monitoring Service (CAMS) and the Copernicus Climate Change Service (C3S) on behalf of the European Commission. Every day, hundreds of millions of satellites and in situ observations are processed at ECMWF to provide the basis for up-to-date global analyses and climate reanalyses of the atmosphere, ocean and land surface, and to generate global weather predictions from hours up to a year ahead. To retain its world-leading position, ECMWF is performing cutting edge research in weather related sciences and high-performance computing. ECMWF’s weather forecasts are disseminated to the ECMWF Member States and thousands of users around the world.

For details visit www.ecmwf.int/<http://www.ecmwf.int/>.


3.    Summary of the role

­ECMWF has embarked on an exciting new initiative to explore the use of artificial intelligence and Machine Learning (ML) in applications of numerical weather predictions and provide the developed tools and techniques to the public.  As part of this effort, ECMWF is participating in the AI4Copernicus H2020 project which funds this position.



This position will be in the Computing Department which coordinates ECMWF’s participation to the project. The successful candidate will apply their skills, knowledge, and expertise to help achieving the goals, and complete the deliverables of the AI4Copernicus project. The main focus will be on the development of supervised ML techniques such as Convolutional Neural Networks, Generative Adversarial Networks, Recurrent Neural Networks and Long-Short Term Memory (LSTM) networks that will be developed for the AI4Copernicus platform for the analysis of single-date and time series of remote sensing images to serve the user cases of AI4Copernicus in the area of agriculture, energy, security and health.



The main responsibility of ECMWF’s contribution is in the development of customised ML models relating to health and wellbeing. This includes predictions of pollution based on a mixture of local observations and three-dimensional data of the atmosphere using three dimensional convolutional neural networks as well as the detection of Earth Observation (EO) related features such as warm spells related to diseases such as Malaria.



The successful applicant will also contribute to knowledge extraction from EO data using unsupervised learning and will support open calls from AI4Copernicus.  The Scientist will work in close collaboration with other teams across the organisation and strong communication skills are essential.



4.    Main duties and key responsibilities:

·     Developing supervised ML techniques for the analysis of single-date and time series of remote sensing images

·     Developing customised ML solutions pertaining to health and wellbeing in the context of Earth System science

·     Contributing to reports, dissemination and technology transfer activities of the AI4Copernicus project



5.     Personal attributes

·     Strong interpersonal and communication skills, particularly listening to and respecting the views of others

·     Enthusiasm to tackle challenging research questions when working with complex technical tools and willingness to learn new algorithms, methodologies and methods

·     Ability to work in a team at ECMWF and within AI4Copernicus towards a common goal in an interdisciplinary research project

·     Excellent analytical and problem-solving skills with an independent and proactive approach, together with an interest in identifying, investigating, and solving technical challenges



6.    Qualifications and experience required



Education

A university degree, or equivalent, in a discipline related to computer science,

physics, mathematics, ML or engineering is required.



A PhD in a related subject is desirable but not essential.

Experience

Experience in developing ML techniques and knowledge extraction.



Experience of ML techniques associated to Earth System data in general, and applications relating to health and wellbeing would be advantageous.



Experience with using Python for EO data, and in particular with machine libraries such as Tensor Flow or Keras, would also be advantageous.

Knowledge and skills (including language)

Experience of working in a Linux-based environment.



A good working knowledge and understanding of Cloud technologies and experience of working in Cloud (either community or public deployments) environments.

A good knowledge of Python and Jupyter notebooks would be useful.



Candidates must be able to work effectively in English and interviews will be conducted in English.



A good knowledge of one of the Centre’s other working languages (French or German) would be an advantage.

7.    Other information

Grade remuneration

The successful candidate will be recruited at the A2 grade, according to the scales of the Co‑ordinated Organisations.

The annual basic salary if based in the UK will be £62,166.00 net of tax.

The annual basic salary if based in Germany will be Euro 75,178.92 net of tax.

This position is assigned to the employment category STF-PS as defined in the Staff Regulations.

Full details of salary scales and allowances are available on the ECMWF website at www.ecmwf.int/en/about/jobs<http://www.ecmwf.int/en/about/jobs>, including the Centre’s Staff Regulations regarding the terms and conditions of employment.

Starting date: 1 March 2021, or as soon as possible thereafter.

Length of contract: 22 months, subject to available funding with possibility of extension.

Location: The role can be located in the Reading area, in Berkshire, United Kingdom, or at ECMWF’s duty station in Bonn, Germany. With the duty station in Bonn currently expected to open in summer 2021, the successful candidate may be asked start in Reading initially.

Successful applicants and members of their family forming part of their households will be exempt from immigration restrictions.

Interviews for this position are expected to take place virtually, in early February 2021.



8.    How to apply

Please complete the online application form available at: www.ecmwf.int/en/about/jobs<http://www.ecmwf.int/en/about/jobs>.

To contact the ECMWF Recruitment Team, please email jobs at ecmwf.int<mailto:jobs at ecmwf.int>.



Please refer to the ECMWF Privacy Statement.  For details of how we will handle your personal data for this purpose, see: https://www.ecmwf.int/en/privacy.

At ECMWF, we consider an inclusive environment as key for our success. We are dedicated to ensuring a workplace that embraces diversity and provides equal opportunities for all, without distinction as to race, gender, age, marital status, social status, disability, sexual orientation, religion, personality, ethnicity and culture. We value the benefits derived from a diverse workforce and are committed to having staff that reflect the diversity of the countries that are part of our community, in an environment that nurtures equality and inclusion.








Mrs Julie Palmer
Recruitment Officer
HR Section, Administration Department
European Centre for Medium-Range Weather Forecasts
Reading, UK | Bologna, Italy
e: julie.palmer at ecmwf.int<mailto:julie.palmer at ecmwf.int> | t: +44 118 949 9161
w: ecmwf.int [ecmwf.int]<https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.proofpoint.com%2Fv2%2Furl%3Fu%3Dhttps-3A__www.ecmwf.int_%26d%3DDwMGaQ%26c%3D6zrz5v1771esYjKEWYkRSg%26r%3DlqWM_PFk98T7kiAzj-kvx7UTCnwD27AqbfrnpLC0esk%26m%3D7pX8efsa9Efpl79zUNBpiwyz_sdTpCej4YfmwHWR6ow%26s%3DBqXFvL9-veKR6TO0ZuDmGUx8X_75xd_s3UCNyzSy6xw%26e%3D&data=04%7C01%7Cjulie.palmer%40ecmwf.int%7Cff4d4f8d636a4fca75ac08d8bcad9975%7C21b711c6aab74d369ffbac0357bc20ba%7C0%7C0%7C637466801083983214%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=chiQ%2Bbzgp%2BJwb8bWwgSCZ9c0KBDyWdbBuyih1t%2F3wS4%3D&reserved=0>
[ECMWF-logo]
Any email message from ECMWF is sent in good faith, but shall neither have binding effect nor be construed as constituting a commitment by ECMWF, except where provided for in a written agreement or if explicitly stated otherwise in the content of such an email. Please note that any views or opinions presented in this email are solely those of the sender and do not necessarily represent those of ECMWF or its Member States. This message and any attachments are intended for the sole use of the addressee(s) and may contain confidential and privileged information. Any unauthorised use, disclosure, dissemination or distribution (in whole or in part) of its contents is not permitted. If you received this message in error, please notify the sender and delete it from your system.


-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://mailman.ucar.edu/pipermail/es_jobs_net/attachments/20210119/d8210a99/attachment-0001.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: image001.jpg
Type: image/jpeg
Size: 4833 bytes
Desc: image001.jpg
URL: <https://mailman.ucar.edu/pipermail/es_jobs_net/attachments/20210119/d8210a99/attachment-0001.jpg>
-------------- next part --------------
An embedded and charset-unspecified text was scrubbed...
Name: ATT00001.txt
URL: <https://mailman.ucar.edu/pipermail/es_jobs_net/attachments/20210119/d8210a99/attachment-0001.txt>


More information about the Es_jobs_net mailing list