<div dir="ltr"><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div>Hi Bidyut,</div><div><br></div><div>Is this a wrf output? Please check this one.</div><div><a href="https://www.ncl.ucar.edu/Document/Functions/WRF_arw/wrf_user_vert_interp.shtml">https://www.ncl.ucar.edu/Document/Functions/WRF_arw/wrf_user_vert_interp.shtml</a><br></div><div><br></div><div>If not, how about creating common bins for the two data. Then take the average of the values for each bin so you can compare them?</div><div><br></div><div>Hope this helps.</div><div><br></div><div>Lyndz</div></div></div></div></div></div></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, May 28, 2021 at 12:41 PM Bidyut Bikash Goswami via ncl-talk <<a href="mailto:ncl-talk@mailman.ucar.edu">ncl-talk@mailman.ucar.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Dear All,</div><div><br></div>I want to compare the vertical profiles of my model simulated variable with observations. But <b>my model variables are defined over the following pressure levels,</b><div><br><div>Variable: p<br>Type: float<br>Total Size: 120 bytes<br> 30 values<br>Number of Dimensions: 1<br>Dimensions and sizes: [lev | 30]<br>Coordinates: <br> lev: [3.643466..992.5561]</div><div>Number Of Attributes: 2<br> long_name : Pressure [mb]<br> units : mb<br>(0) 3.643466<br>(1) 7.59482<br>(2) 14.35663<br>(3) 24.61222<br>(4) 38.2683<br>(5) 54.59548<br>(6) 72.01245<br>(7) 87.82123<br>(8) 103.3171<br>(9) 121.5472<br>(10) 142.994<br>(11) 168.2251<br>(12) 197.9081<br>(13) 232.8286<br>(14) 273.9108<br>(15) 322.2419<br>(16) 379.1009<br>(17) 445.9926<br>(18) 524.6872<br>(19) 609.7787<br>(20) 691.3894<br>(21) 763.4045<br>(22) 820.8584<br>(23) 859.5348<br>(24) 887.0203<br>(25) 912.6445<br>(26) 936.1984<br>(27) 957.4855<br>(28) 976.3254<br>(29) 992.5561</div><div><br></div><div><b>And I have observations defined over:</b></div><div>Variable: po<br>Type: float<br>Total Size: 72 bytes<br> 18 values<br>Number of Dimensions: 1<br>Dimensions and sizes: [18]<br>Coordinates: <br>Number Of Attributes: 2<br> long_name : Pressure [mb]<br> units : mb<br>(0) 115<br>(1) 165<br>(2) 215<br>(3) 265<br>(4) 315<br>(5) 365<br>(6) 415<br>(7) 465<br>(8) 515<br>(9) 565<br>(10) 615<br>(11) 665<br>(12) 715<br>(13) 765<br>(14) 815<br>(15) 865<br>(16) 915<br>(17) 965<br><div><br></div><div>What is the best way of extrapolating the observations to the same vertical levels as the model levels? </div><div><br></div><div>Regards,</div><div>Bidyut</div></div></div></div>
_______________________________________________<br>
ncl-talk mailing list<br>
<a href="mailto:ncl-talk@mailman.ucar.edu" target="_blank">ncl-talk@mailman.ucar.edu</a><br>
List instructions, subscriber options, unsubscribe:<br>
<a href="https://mailman.ucar.edu/mailman/listinfo/ncl-talk" rel="noreferrer" target="_blank">https://mailman.ucar.edu/mailman/listinfo/ncl-talk</a></blockquote></div>