<div dir="ltr"><div><p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif"><span style="font-size:12pt">Dr. Leila Character is seeking a creative problem solver PhD
student to join her lab at Texas A&M University, Department of Geography,
starting in Fall 2026.</span></p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">The successful candidate will work on projects closely
aligned with Dr. Character's expertise, focusing on collection, manipulation,
and preprocessing of remotely sensed and training data to enable production of
new information; development and application of deep learning models for object
detection and segmentation using high-resolution remotely sensed data; and
geospatial and spatial statistical analyses. Potential research areas include:</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif"> </p>

<p class="gmail-MsoListParagraphCxSpFirst" style="margin:0in 0in 0in 0.5in;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif"><span style="font-family:Symbol">·<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;font-size-adjust:none;font-kerning:auto;font-feature-settings:normal;font-stretch:normal;font-size:7pt;line-height:normal;font-family:"Times New Roman"">      
</span></span><b>Environmental Monitoring:</b> Advancing
methods for the detection, characterization, and modeling of natural and
ecological phenomena with applications in the identification of environmental
features, assessment of ecological health, and spatial characterization of
terrestrial and marine environments.</p>

<p class="gmail-MsoListParagraphCxSpMiddle" style="margin:0in 0in 0in 0.5in;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif"> </p>

<p class="gmail-MsoListParagraphCxSpMiddle" style="margin:0in 0in 0in 0.5in;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif"><span style="font-family:Symbol">·<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;font-size-adjust:none;font-kerning:auto;font-feature-settings:normal;font-stretch:normal;font-size:7pt;line-height:normal;font-family:"Times New Roman"">      
</span></span><b>Geospatial Intelligence: </b>Developing approaches
for a diverse set of problems related to automatic target recognition (ATR),
including remote sensing data collection, preprocessing, and fusion; machine
learning model development and implementation; and human-in-the-loop
decision-making systems.</p>

<p class="gmail-MsoListParagraphCxSpMiddle" style="margin:0in 0in 0in 0.5in;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif"> </p>

<p class="gmail-MsoListParagraphCxSpMiddle" style="margin:0in 0in 0in 0.5in;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif"><span style="font-family:Symbol">·<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;font-size-adjust:none;font-kerning:auto;font-feature-settings:normal;font-stretch:normal;font-size:7pt;line-height:normal;font-family:"Times New Roman"">      
</span></span><b>Archaeological Machine Learning</b>:
Developing deep learning and remote sensing approaches for the detection,
mapping, and analysis of archaeological and cultural heritage features in
terrestrial and underwater environments; integrating data from lidar, sonar,
and other sensing modalities to advance heritage preservation, landscape
analysis, and repatriation efforts.</p>

<p class="gmail-MsoListParagraphCxSpLast" style="margin:0in 0in 8pt 0.5in;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif"> </p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">The student's research will leverage diverse datasets and
state-of-the-art machine learning frameworks contributing to both theoretical
advancements and real-world problem-solving. There may also be a significant
fieldwork component for data collection and ground-truthing.</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">Required Qualifications:</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">• A Master's degree in Geography, Environmental Sciences, or
a closely related/relevant field.</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">• Demonstrated proficiency in Python programming for machine
learning (e.g., TensorFlow, Keras, PyTorch, Scikit-Learn).</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">• Strong skills in Geographic Information Systems (GIS)
software (e.g., ArcGIS Pro, QGIS) and remote sensing data processing and
analysis.</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">• Experience with and understanding of deep learning and
other machine learning algorithms for feature detection.</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">• Excellent analytical, problem-solving, and communication
skills (written and oral).</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">• A strong interest in interdisciplinary research and the
application of advanced geospatial techniques to complex real-world problems.</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif"> </p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">Interested candidates are strongly encouraged to review
Professor Character's CV and recent publications to understand the scope and
nature of the lab's research. To express interest, please send an email to
<a href="mailto:leilacharacter@tamu.edu">leilacharacter@tamu.edu</a> with the subject line "PhD Application -
Geospatial Machine Learning" including:</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">1. Your Curriculum Vitae (CV).</p>

<p class="MsoNormal" style="margin:0in 0in 8pt;line-height:115%;font-size:12pt;font-family:Aptos,sans-serif">2. A short statement of interest (a couple of paragraphs in
the email) outlining your research experience, your specific interests that
align with Professor Character's work, and your long-term academic and career
goals.</p></div><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Leila Character, PhD<div>Assistant Professor, Department of Geography</div><div>Texas A&M University</div></div></div></div></div>