<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<title>Zintellect System Email</title>
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
span.EmailStyle18
{mso-style-type:personal-compose;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<div>
<div style="border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in">
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</div>
<p class="MsoNormal">Please forward this through your professional networks. Thank you!<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><b>Postdoctoral Fellowship Posting—USDA-Agricultural Research Service ORISE SCInet Postdoctoral Fellowship in Transdisciplinary Food Security Agency Modeling in Alaska<o:p></o:p></b></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><b>Research Project:</b> The SCINet/Big Data Research Participation Program of the USDA ARS offers research opportunities to motivated postdoctoral fellows interested in solving agriculture-related problems at a range of spatial and temporal
scales, from the genome to the continent, and sub-daily to evolutionary time scales. One of the goals of the SCINet Initiative is to develop and apply new technologies, including AI and machine learning, to help solve complex agricultural problems that also
depend on collaboration across scientific disciplines and geographic locations. In addition, many of these technologies rely on the synthesis, integration, and analysis of large, diverse datasets that benefit from high performance computing (HPC) clusters.
The objective of this fellowship is to facilitate cross-disciplinary, cross-location research through collaborative research on problems of interest to each applicant and amenable to or requiring the HPC environment. Training will be provided in data science,
scientific computing, AI/machine learning, and related topics as needed for the fellow to complete their research.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Throughout the course of this research project, the Fellow will have the opportunity to gain experience in two efforts where we will develop (1) a methodology for a baseline measurement of food agency in Alaska through the lens of biophysical
and socioeconomic drivers, (2) a berry forecasting tool to predict berry growth with community-driven research with the Alaskan Quinhagak community. Food agency focuses on understanding the drivers of food security and insecurity and is the ability of an individual,
community, or nation to meet their food acquisition and preparation goals. The Fellow will identify existing data (including geospatial/remote sensing data) and will conduct research to create a baseline framework for describing food agency in Alaska. The
Fellow will have the opportunity to gain experience in 1) Data collection and integration from multiple sources, 2) Multi-disciplinary data harmonization for modeling purposes, and 3) Creative, empirically-based modeling approaches to address questions that
are not yet integrated into existing mechanistic models. Specifically, the Quinhagak community relies on berry foraging as a large component of their food agency. Therefore, a berry forecasting tool will be developed as a specific application integrating biophysical
and socioeconomic drivers to understand the impacts of climate change on traditional foraging locations as permafrost thaws and soil hydrology changes impacting Rubus chamaemorus / populations. The Fellow will collaborate with community members, tribal governments,
and university partners to use geospatial data provided by partners to develop this community tool to predict Salmonberry harvests in the face of environmental changes.
<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><b>Learning Objectives:</b> The Fellow will have the opportunity to learn social science theory and methodology, transdisciplinary modeling, soil health, statistical and economic modeling. The Fellow will have the opportunity to be mentored
by three supervisors spanning environmental modeling, big data management, statistical modeling, conservation psychology, anthropology, soil and water science, and agricultural economics. The main learning objective of the Fellow will be in the application
of a social theoretical framework to analyze biophysical data and develop a baseline of food agency in Alaska. The Fellow will be encouraged to spend immersive time in Quinhagak, Alaska to meet with community members and learn firsthand about the importance
of berry picking for Yuuyaragq. Additionally, the Fellow will have the opportunity to be an active scientist within the USDA-ARS NGPRL, SEWR and the University of Alaska, Fairbanks. The Fellow will also be able to take online courses in applied scientific
tools, such as R, Python and statistics and to learn collaboration and leadership skills through workshop and working group experiences.
<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><b>Monthly stipend: $7,911.97<o:p></o:p></b></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">For more information! <a href="https://www.zintellect.com/Opportunity/Details/USDA-ARS-SCINet-2023-0228">
<span style="color:windowtext">https://www.zintellect.com/Opportunity/Details/USDA-ARS-SCINet-2023-0228</span></a><o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Sincerely,<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Claire<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Claire Friedrichsen, PhD<o:p></o:p></p>
<p class="MsoNormal">Research Social Scientist<o:p></o:p></p>
<p class="MsoNormal">USDA Agricultural Research Service<o:p></o:p></p>
<p class="MsoNormal">Northern Great Plains Research Laboratory<o:p></o:p></p>
<p class="MsoNormal">Mandan, ND 58554<o:p></o:p></p>
<p class="MsoNormal">Office: 701-663-6445<o:p></o:p></p>
<p class="MsoNormal">Cell: 701-321-3357<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<br>
<br>
<br>
<br>
This electronic message contains information generated by the USDA solely for the intended recipients. Any unauthorized interception of this message or the use or disclosure of the information it contains may violate the law and subject the violator to civil
or criminal penalties. If you believe you have received this message in error, please notify the sender and delete the email immediately.
</body>
</html>