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Abstract. WRF is a well-known weather code with a hybrid OpenMP
and MPI implementation. This paper investigates the performance of
WRF on heterogeneous hardware consisting of Intel� Xeon� proces-
sors and Intel MIC Architecture co-processors, using offload, OpenMP,
and MPI.

1 Introduction

The Intel Many Integrated Core (MIC) architecture[1] was originally announced
in May of 2010. The Knights Ferry design and development kit will be followed
with the Knights Corner product. The Intel MIC architecture combines many
Intel Architecture CPU cores on a single chip. This architecture is very different
from the GPGPU architectures in that it can execute a full operating system
and entire programs, rather than just kernels. In particular, it is possible to run
one or more ranks of an MPI program on an Intel MIC chip.

The Weather Research and Forecasting (WRF) Model[2] is a widely respected
weather prediction systemdevelopedby a collaborative partnership amongNCAR,
NOAA, and several other agencies. A version of WRF was included in the retired
SPEC HPC2002 benchmark suite and is included in the SPEC MPI2007 bench-
mark suite. WRF has a hybrid MPI and OpenMP parallel model, and comes with
benchmark data sets that represent real problems and include verification tests,
making it an excellent code for studying and tuning performance on heterogeneous
parallel systems.

Section 2 describes the Intel MIC hardware architecture. Section 3 describes
the Intel OpenMP and MPI implementations for Intel MIC architecture. Sec-
tion 4 describes WRF, its parallel model, and the benchmark data set. Sec-
tion 5 presents results for compiler offload. Section 6 presents results for hybrid
MPI+OpenMP runs on heterogeneous hardware.

2 Intel MIC Architecture

2.1 Hardware Architecture

The results in this paper were obtained on a Knights Ferry (KNF) PCI-Express
card. The KNF processor consists of 32 in-order cores running at 1200MHz,
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each with four hardware thread contexts. Each core has 256KiB of shared L2
cache, 32KiB of L1 data cache, and 32Kib of L1 instruction cache. The cores are
interconnected to each other and to memory controllers by a ring bus. All caches
are coherent with each other and with main memory. Each core has a 512-bit
vector floating point unit that is able to operate on 16 single precision floating
point values per cycle.

The hardware thread contexts each have their own set of scalar Intel64 regis-
ters as well as 512-bit vector floating point registers. The four hardware threads
help to cover latency as is usual in SMT architectures.

Fig. 1 is a block diagram of the Intel MIC architecture.

Fig. 1. Intel MIC Architecture Block Diagram

KNF is limited to 2GiB of GDDR5 memory.
Multiple KNF cards can communicate with each other and with the host over

the PCI express bus. A DMA engine supports asynchronous data movement
between cards and between a card and the host.

The host hardware used in this paper is a dual socket Intel Xeon X5680
running at 3.33GHz. Each socket is a 6 core part, and each core has two hardware
thread contexts, for a total of 24 hardware thread contexts. The system has
24GiB of memory and runs Red Hat EL6.

2.2 System Software Architecture

KNF runs a version of the Linux kernel with a Busybox[3]environment. The
device has a ramdisk to hold the kernel and the command environment. A virtual
ethernet driver and NFS support is provided, so host file systems can be mounted
on the card, or native executables and shared objects can be copied to the
ramdisk.

Both the host kernel and the device kernel support DMA through a kernel
driver. DMAs can be initiated from either the host or the device and can be



132 L. Meadows

reads or writes. The hardware DMA engine requires 64-byte alignment of source
and destination addresses. It is also possible to map remote memory across the
PCI-Express bus so that writes from one side are visible to the other side.

For memory to be mapped or DMAd, the physical memory must first be
registered (and the virtual addresses pinned) so that it isn’t paged out. Regis-
tration is a relatively expensive operation, and there is a limit to the amount of
memory that can be registered, so careful management of memory registration
is required.

3 Software Stack Implementation

The work described here uses three major pieces of software: OpenMP, MPI,
and compiler-assisted offload.

3.1 OpenMP

Intel’s OpenMP implementation fully supports the OpenMP 3.1 specification[4].
OpenMP annotations are recognized by the compiler, which then generates code
and calls to the OpenMP runtime library to realize the OpenMP parallelism[5].

Since Intel MIC is an implementation of Intel64 Architecture, it is able to use
substantially the same compiler and runtime as Xeon. There are two differences
between Intel MIC and Intel Xeon that affect the runtime implementation or
the optimal use of OpenMP: thread yielding and affinity.

The Intel MIC core is a 4-thread implementation of simultaneous multithread-
ing (SMT)[6]. When a thread is stalled the core executes another thread that is
able to execute. The OpenMP runtime often uses busy wait loops for synchro-
nization. It is important that the thread executing the busy wait loop yield the
core so that other threads on the same core can execute. Intel MIC provides the
delay instruction for this purpose. The delay instruction causes the hardware
thread picker to advance to the next thread on the core. This instruction takes
an integer argument giving the number of cycles for which the thread should be
skipped.

Each hardware thread on Intel MIC is represented by an OS CPU number.
By default, the OS can schedule OpenMP threads on any available CPU, and
can change the CPU on which an OpenMP thread is executed at any time. It
is often useful to restrict the sets of CPUs on which an OpenMP thread can
execute, and also to place particular OpenMP threads on the same core as other
threads.

Intel provides the KMP AFFINITY environment variable (as well as an API) for
this purpose[7]. OpenMP threads can be bound to individual OS CPUs or to
cores, and can be placed according to a policy, or explicitly placed on a given
core or OS CPU. The policies are called compact, to place threads in order on
cores; scatter, to place threads round-robin on cores; and balanced, to place
threads in order on cores but to use as many cores as possible.
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3.2 MPI

One of the major differences between Intel MIC and GPGPU is that Intel MIC
supports a full OS environment. Entire programs, not just kernels, can execute
on Intel MIC. Intel provides an implementation of MPI-2[8] based on MPICH2[9]
that supports MPI communication between process on the devices and processes
on the host, and will support clusters of such nodes. The implementation uses a
combination of mapped memory and DMA for host-device communication, and
shared memory for intra-device and intra-host communication.

3.3 Compiler Offload

Intel MIC can be used in two ways: as a platform for native execution, and as an
offload platform to run portions of a computation. The latter is the way in which
GPGPUs are used as accelerators today. Intel’s compiler provides the ability
to offload essentially arbitrary sections of code to the device from a program
executing on the host using directives (in Fortran) and pragmas (in C/C++).
The offload directives typically specify the data to be transferred between the
host and the device and delimit the code to be executed on the device. The
actual code that is executed on the device can use OpenMP directives or any
other model of parallelism, make system calls, do I/O, and anything else a native
program can do on the device.

Section 5 has an example of offloading a computation from WRF onto the
device (in Fortran).

Offload directives exist for Fortran, C, and C++. The remainder of this section
describes some of the directives for Fortran.

It is possible to offload an OpenMP parallel region to the device with the
!DEC� OMP OFFLOAD directive followed by an OpenMP parallel construct. This
results in an offload region consisting of the body of the parallel construct:

!DEC� OMP OFFLOAD

!OMP PARALLEL

...

!�OMP END PARALLEL

The combined parallel workshare constructs may also be used. It is also pos-
sible to offload a block of code or a call statement.

Attributes following the offload directive tell the compiler which variables
are input to the device (IN), output from the device (OUT), or both input and
output (INOUT). The compiler generates code to transfer the input data before
executing the offload region, execute the offload region, and transfer the data
back after executing the offload region. The compiler attempts to automatically
transfer data that is used in the offload region, but it is often necessary and/or
more efficient to explicitly specify the data to be transferred. There are also
mechanisms to transfer data asynchronously and to start an offload region and
later wait for its completion.

It is also possible to place persistent data, for example, Fortran common
blocks, on both the device and the host. Such data can be updated independently
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by both the device and the host, and can also be transferred to and from the
host with the appropriate offload attributes.

Finally, if a subprogram is called from within an offload region, it is neces-
sary to annotate the subprogram definition so that a device version of the sub-
program is created. This is done with the !DEC� ATTRIBUTES OFFLOAD: MIC::

subprogram-name directive.
When an OpenMP offload region is created on the device, it is completely

independent from any OpenMP region on the host. The number of threads,
thread affinity, and any other attributes of the region are determined from device-
specific environment variables or OpenMP API calls. However, OpenMP thread
teams persist from one offload region to another on the device, so any thread
creation cost is incurred only once.

4 WRF Benchmark

WRF can be run as a single OpenMP process or as multiple MPI+OpenMP
processes. The MPI implementation decomposes the domain and exchanges the
boundaries of the grid at each timestep. The OpenMP implementation further
decomposes the grid into a set of tiles with one tile per OpenMP thread. Each set
is computed in parallel using the OpenMP PARALLEL DO construct. The implicit
barrier at the end of each construct is used for synchronization.

The benchmark data set used in this paper is the single domain 12km Conti-
nental U.S. (CONUS) dataset with a simulation time step of 72 seconds over a
three hour simulated time period. This benchmark is from the WRF V3 bench-
mark page[10]. Version 3.0 of the WRF code was used.

The majority of the execution time is spent in the solve em subroutine and in
subroutines it calls. This subroutine contains 38 PARALLEL DO constructs. Thus
there is overhead for starting and ending each construct, as well as some serial
time outside of the constructs.

We used Vtune Amplifier XE to profile serial execution of the code on the host.
The top 20 functions accounted for 69% of the execution time. The microphysics
routine wsm52d took 11.6% of the time.

5 WRF Offload

Reference [11] describes work done to offload the wsm5 microphysics routine to
an Nvidia accelerator. Since this function takes only 11.6% of the serial time, this
work did not result in significant overall performance improvement. However, it
is a good way to demonstrate the offload capabilities of different compilers and
hardware, so we performed a similar experiment.

The outer loop for this region is show in Fig.2. The NVIDIA offload involved
substantial code restructuring to better match the device’s characteristics. Since
Intel MIC is a general purpose CPU architecture, we were able to offload this
region by simply placing an appropriate directive identifying the offload region
and data to be transferred before the outermost DO loop, as seen below:
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DO j=j t s , j t e
DO k=kts , kte
DO i=i t s , i t e

t ( i , k)=th ( i , k , j )� p i i ( i , k , j )
q c i ( i , k , 1 ) = qc ( i , k , j )
q c i ( i , k , 2 ) = q i ( i , k , j )
qrs ( i , k , 1 ) = qr ( i , k , j )
qrs ( i , k , 2 ) = qs ( i , k , j )

ENDDO
ENDDO
CALL wsm52D( t , q ( ims , kms , j ) , qci , q rs &

, den ( ims , kms , j ) &
,p ( ims , kms , j ) , d e l z ( ims , kms , j ) &
, de lt , g , cpd , cpv , rd , rv , t0c &
, ep1 , ep2 , qmin &
,XLS, XLV0, XLF0, den0 , denr &
, c l i q , c i c e , psat &
, j &
, ra in ( ims , j ) , ra inncv ( ims , j ) &
, s r ( ims , j ) &
, ids , ide , jds , jde , kds , kde &
, ims , ime , jms , jme , kms , kme &
, i t s , i t e , j t s , j t e , kts , kte &
, snow ( ims , j ) , snowncv ( ims , j ) &

)
DO K=kts , kte
DO I=i t s , i t e

th ( i , k , j )=t ( i , k )/ p i i ( i , k , j )
qc ( i , k , j ) = q c i ( i , k , 1 )
q i ( i , k , j ) = q c i ( i , k , 2 )
qr ( i , k , j ) = qrs ( i , k , 1 )
qs ( i , k , j ) = qrs ( i , k , 2 )

ENDDO
ENDDO

ENDDO

Fig. 2. wsm5 outer loop



136 L. Meadows

! dec� omp o f f l o a d t a r g e t (mic : 0 ) in ( de l t , g , cpd , cpv , t0c , &
! dec�& den0 , rd , rv , ep1 , ep2 , qmin ,XLS,XLV0,XLF0, c l i q , &
! dec�& c ice , psat , denr , j t s , j t e , kts , kte , i t s , i t e , ims , &
! dec�& kms , ids , &
! dec�& ide , jds , jde , kds , kde , ime , jms , jme , kme) &
! dec�& in ( t , qc i , q r s ) in ( delz , p , den , p i i ) &
! dec�& inout ( snowncv , ra inncv ) &
! dec�& inout ( qs , qr , qi , qc , th , q , snow , r a in ) &
! �omp p a r a l l e l do p r i v a t e ( i , j , k , t , qc i , q r s )

This tells the compiler which variables to transfer in to, out from, or both
in to and out from the card, and further to create an OpenMP PARALLEL DO

to run on the card. The compiler creates variable descriptors and a function
(encapsulated in a shared object). When the first offload region is encountered,
the offload runtime on the card loads the shared object into memory; then the
offload runtime on the host and the card cooperate to exchange the data and
call the offload function.

It is also necessary to ensure that persistent data on the card is properly initial-
ized. The routine wsm5initmust be called on the card. Finally, the routine rgmma
is called from wsm52D and the compiler must be told that a device version of that
routine is required. The following additional directives, and one additional sub-
routine call, were required in module mp wsm5.F and module physics init.F:

module mp wsm5 .F :
! dec� a t t r i b u t e s o f f l o a d : mic : : wsm52D
! dec� a t t r i b u t e s o f f l o a d : mic : : rgmma
! dec� a t t r i b u t e s o f f l o a d : wsm5init
modu l e ph s i c s i n i t .F :
! dec� o f f l o a d t a r g e t (mic : 0 ) &
! dec� in ( rhoair0 , rhowater , rhosnow , c l i q , cpv , a l l owed t o r ead )

c a l l wsm5init ( rhoair0 , rhowater , rhosnow , c l i q , cpv , &
a l l owed t o r ead )

Offloading wsm5 to the Intel MIC card decreased the time spent in wsm5 by
a factor of 4.4. This includes the time for data transfer to and from the card.
This speedup is comparable to the speedup quoted in [11].

It does not appear that WRF has any other obvious offload opportunities, at
least on this benchmark data set. The other high profile routines are not as com-
pute intensive relative to the amount of data that would have to be transferred.
Conceivably the offload could be performed at the level of the OpenMP parallel
regions in solve em, but this would involve moving almost all the data to the
card and would require a substantial number of offload directives. Therefore, we
took advantage of the general purpose abilities of Intel MIC and used MPI to
move an entire subdomain of the model to the card. This is described in the
next section.
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6 MPI Implementation

WRF supports parallelism at two levels. The problem can be decomposed into
MPI ranks (processes), and then each rank can use OpenMP for parallelism
within the process. This made it easy to run part of the benchmark on the MIC
card and part of the benchmark on the host.

Normally we would have started by running a single process on the MIC card,
tuning for OpenMP and serial performance, and then adding MPI. However, the
benchmark data set is too large to fit in the 2GiB memory of the KNF card.
Measurements on the host indicate that the benchmark requires more than 3GiB
of memory.

The bulk of the WRF data goes on the main thread’s stack. Each OpenMP
thread also requires a stack. Since Intel MIC uses lots of threads, the per-thread
stack size becomes significant. After experimentation we determined that one
MPI rank would fit on the card if the problem was decomposed into four MPI
ranks. This resulted in a main thread stack size of 450MiB and per-thread stack
sizes of 7MiB for a total of 898MiB on 64 threads. Together with the code size,
other internal memory usage, and the ramdisk holding the OS and the images,
and memory usage by the kernel and other processes, this resulted in 100%
memory usage on the card.

Running 4 ranks, with three on the host and one on the card, resulted in a
simulation time speedup of 3.29x over the serial code. The remainder of this
section analyzes the various bottlenecks.

6.1 Timing Model

The OpenMP regions all have implicit barriers at the end. There are no MPI
calls in the OpenMP regions. The MPI exchanges also result in implicit syn-
chronization. Each simulation timestep consists of a number of OpenMP regions
with MPI exchanges and some serial code in between. So the timing model is
relatively simple: Tstep = Tomp+Tmpi+Tserial. Tserial includes both serial com-
putation time and serial OpenMP overhead (such as loop setup and fork-join
overhead). Tomp can be further divided into true parallel time and load imbal-
ance: Tomp = Tpar + Timb. Load imbalance occurs when one thread has less
work than another thread, and shows up as more time spent by a thread in the
implicit barrier.

6.2 Timing Measurement and Results

Vtune has two different kinds of profiling collectors. The software stack sampling
collector uses posix timers to generate periodic interrupts to each thread. It
records the stack at each sample and then provides a breakdown by callstack.
This collector was used on the host to collect the initial profile mentioned in
Section 4. The second collector uses hardware Performance Monitoring Unit
(PMU) events. The events are programmed to interrupt after a certain count
threshold is reached. This collector does not provide a callstack but it does
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provide the IP of the instruction that was executing when the interrupt occured.
The software stack sampling collector is not yet available on Intel MIC so we
used the PMU collector. We used the hardware event CPU CLK UNHALTED
which increments on every clock cycle with an overflow threshold of 2,000,000,
which results in an effective sample rate of 600 HZ. Using the IP associated with
the sample we can get a statistical profile of the application.

The OpenMP runtime library is instrumented to record the entry and exit
to each parallel region. The entry is recorded on each thread, and the exit is
recorded by the main thread after the parallel region completes (immediately
after the master thread returns from the barrier).

Both the runtime instrumentation points and the PMU samples use the high-
resolution Time Stamp Counter (TSC) available on the Intel MIC. The TSCs
are synchronized between the cores and their resolution is the clock frequency;
furthermore the instruction (RDTSC) that is used to read the TSC has very low
overhead.

Thus we have two data sources that we can accurately correlate: the begin-
ning and end of each parallel region, and the samples themselves. This gives us
estimates of Tomp and of Tmpi + Tserial as follows: when a sample for a thread
falls within a parallel region for that thread, it is labeled as Tomp; when it falls
outside a parallel region, it is labeled as Tserial.

We can further segregate the Tserial samples by looking at the shared object
(module) in which the IP for the sample resides. For example, the OpenMP
runtime and the MPI runtime are implemented as shared objects; further the
WRF code itself is a separate module (the main program wrf.exe).

We tried to measure MPI time directly using mpiP[12]. The tool worked, but
it increased execution time by more than 10%, so the results were inconclusive.
Ideally we could get Tmpi from the samples that fall into the MPI module;
however, much of the MPI time is spent doing DMA in the kernel.

The following table shows Tpar and Timb statistics per thread, and Tomp,
Tserial, and Tmpi (estimated) as percentages of the total simulation time.

Average Stddev Overall

Tpar 45.17 7.97
Timb 17.03 7.35
Tomp 64.64
Tserial 7.70
Tmpi 27.56

7 Conclusions and Future Work

This paper describes the results of running one of the standard WRF
benchmarks on Intel MIC KNF hardware using both compiler offload and het-
erogeneous MPI. A very low overhead method of determining OpenMP load im-
balance is presented. The design and development KNF kit exhibits respectable
performance.
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Some of the methods used in this paper provide implementation ideas for
future tools. Future areas for investigation include finer-grained characterization
of OpenMP and MPI overheads and analysis of core-level performance on specific
WRF subroutines.
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