;=========================================================== ; Constants to be made GLOBALly available. ;=========================================================== ; This serves the purpose of having in one place ; commonly used constants and conversion factors. ; The purpose of the awkward (CAP)_C is to try to ensure ; that the variable names will be unique. ; ; N[ewton] kg-m/s2 ; force ; J[oule] kg-m2/s2 ; energy ; Pa kg/(m-s2)=N/m2 ; pressure ; hPa=mb Pa*0.01 ; W[att] kg-m2/s3 =J/s ; power ; l[iter] 1e-3 m3 ; 1 J[oule] = 1e7 ergs ; 1 erg = 1e-7 J ; 1 J[oule] = 0.238846 cal[ories] ; 1 cal[orie] = 4.1868 J[oules] ==> 4.1868e7 ergs ; 1 langley = 1 gm-calorie/cm2 = 41.84 kilojoules per square meter (kJ/m2) ; 1 langley = 41849. ; [J/m2] ; ; kg/m2 => mm ; [kg/m2][1000 mm/m][(1/1000) m3/kg] ==> mm GRAV_C = 9.80665 ; [m/s] gravity at 45 deg lat used by the WMO OMEGA_C = 7.292e-05 ; [1/s] earth's angular vel RE_C = 6.37122e06 ; [m] average radius of earth PI_C = 4.*atan(1.) ; pi RAD_C = PI_C/180. ; [radian/degree] convert degrees to radians ; spc heat capacities [Hess, pg 24] CP_C = 1004. ; [J/(K kg)] <==> [ m2/(K s2) ] dry air constant p CV_C = 717. ; [J/(K kg)] <==> [ m2/(K s2) ] dry air constant vol CSW2_C = 951. ; sea water [salinity @ 2% SST= 17.5C] CSW4_C = 926. ; sea water [salinity @ 4% SST= 17.5C] CICE_C = 503. ; pure ice [salinity @ 0% SST= 0.0C] SOLAR_C = 2.0 ; langley/min LAT2M_C = 111.1e3 ; [m] 1 degree of latitude in meters CLIGHT_C= 2.99792e8 ; [m/s] RD_C = 287. ; [J/(K-kg)] Gas Constant dry air RV_C = 461. ; [J/(K-kg)] Gas Constant water vapor ; latent heat [Wallace - Hobbs] ; LV_C = 2.5104e6 ; [J/kg]=[m2/s2] Latent Heat of Vaporization of Water LV_C = 2.26e6 ; [J/kg]=[m2/s2] Latent Heat of Vaporization LV100_C = 2.25e6 ; [J/kg]=[m2/s2] latent heat of vaporization at 100C LF_C = 3.34e5 ; [J/kg]=[m2/s2] latent heat of fusion at 0C MD_C = 28.97 ; unitless; molecular weight dry air D_H2O_C = 1000 ; [kg/m3] Density of Liquid Water at 4C D_AIR_C = 1.275 ; [kg/m3] Density of Dry Air at 1000mb and 0C [varies as p/T] TC_AIR_C = 0.240 ; [J/(m s2 K)] Thermal conductivity of dry air at 0C SB_C = 5.6696e-8 ; [W/(m2 K4)] Stefan_Boltzmann constant SECDAY_C = 86400. ; [s/day] = [s/24hr] ; To convert units kg/(m2-s) to mm/day ; multiply by (10^3mm m-1 x 86400 s day-1) and ; divide by density_H2O (1000 kg m-3). CON_A = 86400. ; [kg/m2-s][1000 mm/m][86400 s/day][(1/1000) m3/kg] ==> mm/day ; To convert mm/day to W/m2 [(kg/s3)] ; multiply by (density_H2O x L) and ; divide by (10^3mm m-1 x 86400 s day-1). CON_B = LV_C/SECDAY_C ; [mm/day][1000 kg/m3][2.51e6 m2/s2][(1/1000) m/mm][(1/86400) day/s] ==> kg/s3 =>W/m2 ; molecular weight of dry air 28.97 ; molecular weight of water vapor 18.016 ; http://www.ssec.wisc.edu/~paulv/Fortran90/Profile_Utility/Units_Conversion.f90.html#PPMV_TO_MR ; MW(MOL) ; mr(MOL) = 0.001 . ppmv(MOL) . ------------- ; MW(Dry Air) ; where MW(Dry Air) = Average molecular weight of dry air ; MW(MOL) = Molecular weight of the gas in question. ; ; The factor of 0.001 derives from the product of the g/g to g/kg. ; scale factor (1000) and the "parts-per-million" to ; "parts-per" scale factor (1.0e-06) CON_C = (28.97/18.016); ppmv to ppmm [g/kg] CON_D = CON_C*0.001 ; kg/kg