<div dir="ltr"><div><div>In my opinion, spline interpolation would not be good for "interpolating the coarse resolution 2-D rectilinear grids into the finer resolution". It would be possible to get some 'over/under' estimates at 'between' grid points.<br><br></div>I suggest simple bilinear interpolation: <br><br><a href="http://www.ncl.ucar.edu/Document/Functions/Contributed/linint2_Wrap.shtml">http://www.ncl.ucar.edu/Document/Functions/Contributed/linint2_Wrap.shtml</a><br><br></div><div>As I'm sure you know, a coarse grid interpolated to a finer resolution does not provide any extra information.<br><br></div><div>Good Luck<br></div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Oct 17, 2016 at 10:15 AM, Lisi Pei <span dir="ltr"><<a href="mailto:lisipei@msu.edu" target="_blank">lisipei@msu.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word">Hi,<div><br></div><div>I am thinking of interpolating the coarse resolution 2-D rectilinear grids into the finer resolution with spline interpolation method. Among so many NCL functions in the interpolations: <a href="http://www.ncl.ucar.edu/Document/Functions/interp.shtml" target="_blank">http://www.<wbr>ncl.ucar.edu/Document/<wbr>Functions/interp.shtml</a>, I am not sure which one/combination will suite my purpose best. Do you have any recommendations? Thank you for any possible help in advance.</div><div><br></div><div>Best,</div><div>Lisi</div><div><br></div><div> </div></div><br>______________________________<wbr>_________________<br>
ncl-talk mailing list<br>
<a href="mailto:ncl-talk@ucar.edu">ncl-talk@ucar.edu</a><br>
List instructions, subscriber options, unsubscribe:<br>
<a href="http://mailman.ucar.edu/mailman/listinfo/ncl-talk" rel="noreferrer" target="_blank">http://mailman.ucar.edu/<wbr>mailman/listinfo/ncl-talk</a><br>
<br></blockquote></div><br></div>