
Field Statistics Module:

Requirements and Design

MPAS Development Team

February 26, 2013

Contents

1 Summary 2

2 Requirements 3
2.1 Requirement: Field Time Average Module 3
2.2 Requirement: Moment Computation Module 3
2.3 Requirement: Run-time configuration 3

3 Design and Implementation 4
3.1 Implementation: Time Average Module 4
3.2 Implementation: Moment computation module 5
3.3 Implementation: Run-time configuration 6

4 Testing 7
4.1 Testing and Validation: Run-time I/O Layer 7

1

Chapter 1

Summary

This document describes a module which can compute generic statistics
given a field. The statistics described in this document are specifically time
averages, and moments, however this could be extended at a later time.

2

Chapter 2

Requirements

2.1 Requirement: Field Time Average Module

Date last modified: 02/26/13
Contributors: (Doug Jacobsen)

Some cores require the ability to time average fields. It would be useful to
have this capability built into the shared framework, so fields can arbitrarily
be time averaged and written to an output stream.

2.2 Requirement: Moment Computation Module

Date last modified: 02/26/13
Contributors: (Doug Jacobsen)

In addition to time averages, cores might benefit from computing the
moments of fields.

2.3 Requirement: Run-time configuration

Date last modified: 02/26/13
Contributors: (Doug Jacobsen)

The decision to compute time averages or moments of fields should be
handled at run-time rather than build time.

3

Chapter 3

Design and Implementation

3.1 Implementation: Time Average Module

Date last modified: 02/26/13
Contributors: (Doug Jacobsen)

One issue with time averaging fields is they generally require the addition
of another field, which represents the time average of the full field. Currently
the structure for adding a time average field would include creating a new
field, and within a core averaging the full field into that new field every time
step.

An alternative, is to add another array to each field type as follows:

! Derived type for storing fields

type field5DReal

! Back-pointer to the containing block

type (block_type), pointer :: block

! Raw array holding field data on this block

real (kind=RKIND), dimension(:,:,:,:,:), pointer :: array

real (kind=RKIND), dimension(:,:,:,:,:), pointer :: tavgArray

! Information used by the I/O layer

type (io_info), pointer :: ioinfo ! to be removed later

character (len=StrKIND) :: fieldName

character (len=StrKIND), dimension(:), pointer :: constituentNames => null()

character (len=StrKIND), dimension(5) :: dimNames

integer, dimension(5) :: dimSizes

logical :: hasTimeDimension

logical :: isSuperArray

type (att_list_type), pointer :: attList => null()

! Pointers to the prev and next blocks for this field on this task

type (field5DReal), pointer :: prev, next

! Halo communication lists

type (mpas_multihalo_exchange_list), pointer :: sendList

type (mpas_multihalo_exchange_list), pointer :: recvList

type (mpas_multihalo_exchange_list), pointer :: copyList

end type field5DReal

4

At runtime, the namelist for a particular field will determine if this field
is supposed to be time averaged or not. If the field is determined to be time
averaged, this new tavgArray array will be allocated.

A new time average module will be created, which will include checks on
all fields that have 2 or more time levels defined and will compute the time
averages of all fields that have an allocated tavgArray array.

This new module will largely be created by Registry, and will allow
cores to call a single set of subroutines to zero, increment, and normalize
time averaged fields.

One requirement for this formulation, is that a field and it’s time averages
share the same output streams. This means a stream can’t contain only the
time average of a field, or just the field. If one is to be written out, and both
are computed, both are written out.

3.2 Implementation: Moment computation mod-
ule

Date last modified: 02/26/13
Contributors: (Doug Jacobsen)

The implementation of a moment computation module largely follows
the time average module formulation. A moment array is added to each
field, along with a moment ID array, as follows.

! Derived type for storing fields

type field5DReal

! Back-pointer to the containing block

type (block_type), pointer :: block

! Raw array holding field data on this block

real (kind=RKIND), dimension(:,:,:,:,:), pointer :: array

real (kind=RKIND), dimension(:,:,:,:,:,:), pointer :: tavgMoments

real (kind=RKIND), dimension(:,:,:,:,:,:), pointer :: momentsArray

real (kind=RKIND), dimension(:), pointer :: momentIDs

! Information used by the I/O layer

type (io_info), pointer :: ioinfo ! to be removed later

character (len=StrKIND) :: fieldName

character (len=StrKIND), dimension(:), pointer :: constituentNames => null()

character (len=StrKIND), dimension(5) :: dimNames

integer, dimension(5) :: dimSizes

logical :: hasTimeDimension

logical :: isSuperArray

type (att_list_type), pointer :: attList => null()

! Pointers to the prev and next blocks for this field on this task

type (field5DReal), pointer :: prev, next

! Halo communication lists

type (mpas_multihalo_exchange_list), pointer :: sendList

type (mpas_multihalo_exchange_list), pointer :: recvList

5

type (mpas_multihalo_exchange_list), pointer :: copyList

end type field5DReal

The momentsArray array is one higher dimension than the field array,
to allow multiple moments to be stored within the same array. Moments to
compute will be specified in the I/O namelist, the same way time averaging is
specified. Potentially a space delimited list of moment numbers to compute
will be specified as follows:

&fieldName

config_fieldName_moments = "2 4"

/

This input string will be broken apart and stored in the momentIDs
array. A call to a shared subroutine for moment computation will compute
all requested moments, and store them in the momentsArray array. As
with the time averages, these arrays are not allocated if moments are not
requested for the specific field. When the moment computation module is
called, all fields are checked to see if any moments should be computed,
based on if the momentIDs array is allocated with values or not.

Additionally, a tavgMoments array is provided to compute time averages
of the moments.

As with the time averages, all moments and time averages of moments
are share the same output streams as the parent field.

3.3 Implementation: Run-time configuration

Date last modified: 02/26/13
Contributors: (Doug Jacobsen)

The implementation for run-time configuration of field statistics requires
the implementation of a run-time I/O layer. After the run-time I/O layer is
complete, the namelist that controls I/O will contain flags for each field to
determine which statistics (if any) should be computed.

At run-time, these flags will be checked and MPAS will either compute
the statistics for a particular field or will skip the field all together.

6

Chapter 4

Testing

4.1 Testing and Validation: Run-time I/O Layer

Date last modified: 02/26/13
Contributors: (Doug Jacobsen)

7

