
Non-blocking Halo Exchanges:

Requirements and Design

MPAS Development Team

February 21, 2013

Contents

1 Summary 2

2 Requirements 3
2.1 Requirement: Allow Non-blocking halo exchanges 3
2.2 Requirement: Allow interior and exterior block loops 3

3 Design and Implementation 4
3.1 Implementation: Allow interior and exterior block loops . . . 4
3.2 Implementation: Non-blocking halo exchanges 5

4 Testing 8
4.1 Testing and Validation: Non-blocking halo exchanges 8

1

Chapter 1

Summary

Within the MPAS framework, blocking halo exchanges are currently pro-
vided. These halo exchanges support the use of multiple blocks per MPI
task, however an alternative version of halo exchanges might be preferred
when using optimally distributed blocks. These alternative halo exchanges
can be referred to as, non-blocking halo exchanges.

This document describes the requirements and implementation for a non-
blocking halo exchange within the MPAS framework.

2

Chapter 2

Requirements

2.1 Requirement: Allow Non-blocking halo exchanges

Date last modified: 02/21/13 Contributors: (Doug Jacobsen, Michael Duda)
The MPAS framework should allow the use of non-blocking halo ex-

changes, to overlap computation and communication as much as possible.

2.2 Requirement: Allow interior and exterior block
loops

Date last modified: 02/21/13 Contributors: (Doug Jacobsen, Michael Duda)
The MPAS framework should provide developers with a method of deter-

mining which blocks are interior or exterior. These blocks will be described
in the implementation section.

3

Chapter 3

Design and Implementation

3.1 Implementation: Allow interior and exterior
block loops

Date last modified: 02/21/13 Contributors: (Doug Jacobsen, Michael Duda)
While MPAS currently provides the ability for a single MPI task to have

multiple computational blocks, these blocks can be arbitrarily distributed.
This means the blocks don’t have to be part of a larger contiguous block.

Although this is true, in order to overlap computation and communica-
tion a user would prefer to assign connecting blocks to an MPI task. This
allows local copies to remove some of the time between the MPI send/recv
and MPI waits within halo exchange routines.

Furthermore, if the blocks do create a larger contiguous block, they can
additionally be flagged as interior or exterior. An interior block would be a
block that only communicates with other blocks that live on the MPI task,
while exterior blocks communicate with blocks that live on other MPI tasks
and can’t communicate with only local copies.

To enable this functionality, a logical flag isInterior is added to each
block. When creating the exchange lists, this flag is set appropriately based
on the previous definition.

Block loops can then be modified in the following way to loop over either
interior or exterior blocks.

4

! E x t e r i o r b l o c k l oop
block => domain % b l o c k l i s t
do while (a s s o c i a t ed (block))

i f (. not . block % i s I n t e r i o r) then
e x t e r i o r block computations

end i f

block => block % next
end do

! I n t e r i o r b l o c k l oop
block => domain % b l o c k l i s t
do while (a s s o c i a t ed (block))

i f (block % i s I n t e r i o r) then
i n t e r i o r block computations

end i f

block => block % next
end do

3.2 Implementation: Non-blocking halo exchanges

Date last modified: 02/21/13 Contributors: (Doug Jacobsen, Michael Duda)
The currently provided halo exchanges are considered blocking, meaning

once you begin a halo exchange you can’t do anything else until the halo
exchange is completed. In order to overlap computation and communication
developers might like the ability to have non-blocking halo exchanges. The
blocking halo exchanges currently have the following structure:

I n i t i a l i z e Halo Exchange :
Build communication l i s t s
A l l o ca t e bu f f e r s
I n i t i a t e non−b lock ing recv
F i l l send bu f f e r
I n i t i a t e non−b lock ing send

Handle l o c a l c op i e s :
Copy elements between b locks on

a s i n g l e MPI task

F i n a l i z e Halo Exchange :
Wait f o r non−b lock ing recv to f i n i s h
Unpack bu f f e r
Wait f o r non−b lock ing send to f i n i s h
Destroy bu f f e r s and communication l i s t s

Currently the communication lists contain the buffers, and persist only
as long as the MPI task is within the halo exchange routine. Alternatively,
communication lists can be attached to a field as below.

5

! Der ived t ype f o r s t o r i n g f i e l d s
type f i e l d 1DIn t e g e r

! Back−p o i n t e r to t h e c on t a i n i n g b l o c k
type (b lock type) , pointer : : block

! Raw array h o l d i n g f i e l d data on t h i s b l o c k
integer , dimension (:) , pointer : : array

! In fo rmat ion used by t h e I /O l a y e r
type (i o i n f o) , pointer : : i o i n f o ! t o be removed l a t e r
character (len=StrKIND) : : f ie ldName
character (len=StrKIND) , dimension (:) , pointer : : constituentNames => nu l l ()
character (len=StrKIND) , dimension (1) : : dimNames
integer , dimension (1) : : d imSizes
log ica l : : hasTimeDimension
log ica l : : i sSuperArray
type (a t t l i s t t y p e) , pointer : : a t tL i s t => nu l l ()

! Po in t e r s to t h e prev and nex t b l o c k s f o r t h i s f i e l d on t h i s t a s k
type (f i e l d 1DIn t e g e r) , pointer : : prev , next

! Halo communication l i s t s

type (mpas communication list), pointer :: commSendList, commRecvList

type (mpas mu l t iha l o exchange l i s t) , pointer : : s endLi s t
type (mpas mu l t iha l o exchange l i s t) , pointer : : r e c vL i s t
type (mpas mu l t iha l o exchange l i s t) , pointer : : copyList

end type f i e l d 1DIn t e g e r

Additionally, each of the phases from the current halo exchanges can
be abstracted into it’s own subroutine. This provides the following new
interfaces:

mpas dmpar beg in exch ha lo f i e ld
m p a s d m p a r l o c a l e x c h h a l o f i e l d
mpas dmpar end exch ha lo f i e ld

Each of these subroutines is called exactly like the current blocking halo
exchange routines, however they now create and work on communication
lists attached to the first block’s field that is to be communicated. This
allows the communication list to persist, until destroyed. Even if the de-
struction of the communication list happens within another subroutine.

Using this new structure, and the previously described interior and ex-
terior block flags a block loop with halo exchanges that look similar to:

block => domain % b l o c k l i s t
do while (a s s o c i a t ed (block)

ca l l mpas compute veloc ity (block)
ca l l mpas compute divergence (block)
block => block % next

end do

ca l l mpas dmpar exch ha lo f i e ld (domain % b l o c k l i s t % v e l o c i t y)
ca l l mpas dmpar exch ha lo f i e ld (domain % b l o c k l i s t % divergence)

6

can now be broken up into two separate loops, as follows:

block => domain % b l o c k l i s t
do while (a s s o c i a t ed (block)

i f (. not . block % i s I n t e r i o r) then
ca l l mpas compute veloc ity (block)
ca l l mpas compute divergence (block)

end i f
block => block % next

end do

ca l l mpas dmpar beg in exch ha lo f i e ld (domain % b l o c k l i s t % v e l o c i t y)
ca l l mpas dmpar beg in exch ha lo f i e ld (domain % b l o c k l i s t % divergence)

block => domain % b l o c k l i s t
do while (a s s o c i a t ed (block)

i f (block % i s I n t e r i o r) then
ca l l mpas compute veloc ity (block)
ca l l mpas compute divergence (block)

end i f
block => block % next

end do

ca l l mpas dmpar l o ca l ex ch ha l o f i e l d (domain % b l o c k l i s t % v e l o c i t y)
ca l l mpas dmpar l o ca l ex ch ha l o f i e l d (domain % b l o c k l i s t % divergence)

ca l l mpas dmpar end exch ha lo f i e ld (domain % b l o c k l i s t % v e l o c i t y)
ca l l mpas dmpar end exch ha lo f i e ld (domain % b l o c k l i s t % divergence)

7

Chapter 4

Testing

4.1 Testing and Validation: Non-blocking halo ex-
changes

Date last modified: 02/21/13
Contributors: (Doug Jacobsen, Michael Duda)

Simulations can be performed with blocking and non-blocking halo ex-
changes using the same decomposition. These simulations should be bit-
reproducible regardless of core.

8

