MPAS 1/0

March 14, 2012

Contents

3

2 Requirements| 4
3 Design 6
3.1 Issues and constraintsl 6
3.1.1 Model bootstrapping|. 6
[3.1.2 Super-arrays| e e e 7
[3.1.3 Variable attributes and dimensionsl 00000 8

3.2 High-level approach| 9
[3.3 High-level intertace description| oo 9
IMPAS createStreaml 10
IMPAS streamAddFieldl 11
[MPAS readStreaml 11
IMPAS writeStreaml L 12
[MPAS readStreamAttlo oo 12
IMPAS writeStreamAtt] L oL 12
IMPAS closeStreaml| 13

13.4 Low-level interface description|. Lo 13
IMPASTOINTE - -« v v v e e e e e 13
IMPAS Jo_open| 14
IMPAS joing.dim|. 14
IMPAS Jo_inq_unlimited dim| oo 15
IMPAS jodet diml o 15
IMPAS Joing_var| 15
IMPAS o def var] Lo 16
IMPAS io_get_var_indices| 16
[MPAS jo set var indicedo oL 17
[MPASjoset framel 17
IMPAS 10 advance framelo 18
IMPAS Jo_get_var| L 18
IMPAS Jo_put_var| e 18
IMPAS Jo_get_att| 19
IMPAS joput_att] 19
....................................... 20
[MPAS jo finalizel 20

3.5 Variable attribute routines|. 20

mpas_add_att] . .
mpas_get_att] . .

Impas_remove_att|

[4 Implementation|

Chapter 1

Introduction

In order to support multiple blocks of cells per MPI task, there are a number of development issues
that need to be addressed:

1.

Update/extend the fundamental derived types in mpas_grid_types.F. In order for other parts
of the infrastructure to handle multiple blocks per task in a clean way, we’ll need to be
able to pass a head pointer to a field into a routine, and have that routine loop through all
blocks for that field, with information about which cells/edges/vertices in that field need to
be communicated.

. Decide on a new MPAS I/O abstraction layer, which will provide a high-level interface to the

PIO layer for the rest of MPAS. This layer should work with blocks of fields, and make it
possible to define an arbitrary set of I/O streams at run-time.

. Add a new module to parse a run-time I/O configuration file that will describe which fields

are read or written to each of the I/O streams that a user requests via the file. This module
will make calls to the new MPAS I/0 layer to register the requested fields for I/O in the
requested streams.

. Update the mpas_dmpar module to support communication operations on multiple blocks

per task. This will likely involve revising the internal data structures used to define com-
munication of cells between tasks, and also require revisions to the public interface routines
themselves.

. Modify the block_decomp module to enable a task to get a list of cells in more than one

block that it is to be the owner of. Implemented in the simplest way, there could simply be
a namelist option to specify how many blocks each task should own, and the block_decomp
module could look for a graph.info.part.n file, with n=num_blocks_per_task*num_tasks, and
assign blocks k, 2k, 3k, ..., num_blocks_per_task*k to task k.

This document addresses the requirements and design of a new MPAS I/O layer (Item 2, above)
that will provide much-needed functionality, including the ability to perform I/O on multiple blocks
per MPI task, to perform input and output in parallel, and to allow for an arbitrary number of
I/O streams (as well arbitrary set of fields in each of those streams) to be defined by the user.

Chapter 2

Requirements

In order to meet current I/O needs, and to provide flexibility for future extension, the new 1/0O
layer in MPAS must meet the following requirements.

e The I/O interface must allow the user to define sets of fields (constituting a “stream”) that
are read or written as a group from/to a file at a common time. The I/O times, as well as
the fields in the stream, are decided on a per-stream basis.

e The dimensions used by fields in a stream must be arbitrary.
e It must be possible to designate each stream as either an input stream or an output stream.

e There must be no artificial limit (i.e., aside from memory limits) to the number of streams
that can be concurrently in use.

e The I/O interface must allow the user to choose which I/O “format” (among any that are
implemented by the I/O layer) to use on a per-stream basis. A format refers to the file
format and method used to write the file, e.g., netCDF, pNetCDF or binary via MPI-IO. At
a minimum, the I/O layer must implement both serial netCDF and pNetCDF.

e The user must be able to specify the number of tasks used for I/O.

e The I/O interface must support the ability to read and write variable attributes and global
attributes.

e The I/0O interface must support fields with multiple blocks on an MPI task.

e For an identical field, it must be possible to produce identical file output through the I/0O
layer regardless of the MPI task count, the distribution of blocks between MPI tasks, or the
distribution of cells between blocks.

e The I/0 layer must support an exact model restart.

e The I/0 layer must implement CF metadata conventions.

In addition to the these requirements, there are several capabilities that should be considered for
eventual (if not immediate) implementation in the new I/O layer; consequently, the design should
accommodate the addition of the following capabilities as much as possible.

Output subsetting: In many cases, it would be useful to write fields on only a subset of the
full MPAS grid. For example, we may like to write certain fields only over the high-resolution
part of a variable-resolution grid at a higher temporal frequency.

Precision conversion: For high-resolution or very long simulations, it may not be desirable
to write real-valued history fields in double precision, and in such cases, the ability to write
certain fields to disk in single precision would be beneficial in terms of time spend doing
output and in terms of disk space.

Use a specified file handle: When MPAS is being driven by another model or coupler, e.g., in
the case where MPAS-A is being run within CAM, the ability to read or write from a specified
file handle (primarily a PIO file handle, assuming the initial I/O layer will be implemented
using PIO) would allow for the re-use of the MPAS I/O layer.

Field masking: The ability to substitute masked or missing values in fields for more sensible
missing values in output files would be helpful in certain cases.

Chapter 3

Design

In this chapter, the design of the MPAS 1/0 layer is described. First, a summary of implementation
issues is presented to help in understanding the constraints placed on the design; a major consid-
eration is the fact that, although partitions of the MPAS SCVT meshes are currently computed
off-line, to be read at model start-up, MPAS should ultimately be capable of computing this parti-
tion ‘on-line’, that is, at run-time. Having discussed the major design constraints, the interface to
the new I/O layer is then presented in detail.

3.1 Issues and constraints

3.1.1 Model bootstrapping

The process of reading fields at the beginning of an MPAS model run is inherently tied to the
process of partitioning the SCV'T mesh at run-time. This follows from the fact that cell-connectivity
information must be used in the generation of the partitions, yet this information resides in the
very file to be read as the cellsOnCell field. Further, in order to partition the edges and vertices of
the mesh, information on the connections between the edges, vertices, and cells is needed, and this
information is also stored in a file as edgesOnCell, cellsOnEdge, verticesOnCell, and cellsOn Vertex.
In short, cell-based fields are needed in order to partition the SCVT mesh so that these and other
cell-based fields can be read in parallel onto their (computed) computational partitions (i.e., blocks),
and similarly for edge-based and vertex-based fields.

The current procedure for dealing with these issues relies on a bootstrapping procedure, in
which:

1. The total number of cells, edges, and vertices in the mesh are read from the input file from
the dimensions nCells, nEdges, and nVertices.

2. A contiguous range of cell, edge, and vertex global indices is assigned to each task, e.g., cells
nint(mpi_rank * nCells / mpi_size)+1 through nint((mpi_rank+1) * nCells / mpi_size).

3. Each I/O task reads its range of global indices for the fields indexToCellID, indexToFEdgelD,
indexTo VertexID, nEdgesOnCell, cellsOnCell, edgesOnCell, verticesOnCell, cellsOnFEdge, and
cellsOn Vertex.

4. A partitioning of the SCVT mesh is requested from the block_decomp module, given a dis-
tributed description of the mesh connectivity based on the cellsOnCell field (distributed across
all I/O tasks); currently, this partitioning is read from a graph.info file.

5. The indexToCellID, nEdgesOnCell, and cellsOnCell fields are re-distributed so that each of
the tasks owns the global indices of these fields that were assigned to it by the partitioning
of the mesh.

6. Halos are constructed for the cells; a halo consists of all of the cells referenced in the cellsOn-
Cell array that are not in the indexToCellID array.

7. The edgesOnCell and verticesOnCell fields are re-distributed so that each task has these fields
for all cells in its block(s), including halo cells.

8. Each task constructs a list of edges and vertices adjacent to cells in the blocks(s) owned by
that task.

9. The cellsOnEdge and cellsOn Vertex fields are re-distributed so that each task has these fields
for all edges and cells in its block(s).

10. The edges and vertices in each block are divided into owned and halo edges and vertices based
on the cellsOnEdge and cellsOnVertex fields; an edge iFdge is owned iff cellsOnEdge(1, iEdge)
is an owned cell, and a vertex i Viz is owned iff cellsOnVertex(1, iVtz) is an owned cell.

11. Knowing how many (and which) cells, edges, and vertices are in each block (as well as which
are owned and which are ghost), block data structures are allocated by each task.

12. Fields are then read in parallel and re-distributed among the tasks into the field arrays of the
block data structures on each task.

In this procedure, it is important to note that every compute task is also an 1/O task. This
will not be true in future, where the I/O tasks may be a subset of the MPI tasks (or possibly even
a disjoint set of tasks).

3.1.2 Super-arrays

Currently, the registry-generated I/O code in the mpas_io_input and mpas_io_output modules han-
dles the details of packing and unpacking individual constituent arrays from super-arrays; for
example, in the atmosphere models, the fields qv, gc, and ¢r exist as individual fields in input and
output files, but are packaged together in a “super-array” of one higher dimension in the model,
namely, as the array scalars. To support multiple blocks per MPI task, the I/O system will most
naturally work with the derived data types for fields and blocks, since these types contain links
between blocks on the same MPI task. However, there is currently no information available in the
field types to indicate whether the field is a super-array, and, if so, the names of its constituents.
The new I/0O system could rely on the MPAS registry to generate code internal to the module to
handle super-arrays, but such an approach would not easily facilitate run-time determination of
the number of scalar constituents in a model, nor would it lead to completely general I/O code. In
the new 1/O layer, it would be preferable to have no registry-generated internal code (internal to
the module), and to require that the field types be extended to contain super-array information,
so that the I/O layer would be presented with all necessary information to pack or unpack these
super-arrays.

3.1.3 Variable attributes and dimensions

In order to make the field types self-describing for the I/O layer, it will be necessary to extend
these types to contain extensible lists of variable attributes — in place of the currently hard-wired
attributes units and description in the io_info component of the field types. Also, information about
the dimensions of the field should be added. One possible way of extending the field types would
result in definitions as in the listings below.

! Derived type for storing fields
type field3DReal

! Back—pointer to the containing block
type (block_type), pointer :: block

! Raw array holding field data on this block
real (kind=RKIND), dimension(:,:,:), pointer :: array

! Information used by the I1/0 layer
character (len=1024) :: fieldName

character (len=1024), dimension (3) :: dimNames
integer , dimension(3) :: dimSizes

logical :: hasTimeDimension

type (att_list_type), pointer :: att_list

! Pointers to the prev and next blocks for this field on this task
type (field3DReal), pointer :: prev, next

! Halo communication lists

type (exchange_list), dimension(:), pointer :: sendList
type (exchange_list), dimension(:), pointer :: recvList
type (exchange_list), dimension (:), pointer :: copyList

end type field3DReal

! Derived type describing info for doing I/O specific to a field
type att_list_type
character (len=1024) :: attName

integer :: attType ! 1=int, 2=int_array, 3=real, etc.

integer :: attValuelnt ! attType==1
integer , dimension(:), allocatable :: attValuelntA ! attType==2
real :: attValueReal ! attType==3
! etc.

type (att_list_type), pointer :: next

end type att_list_type

Besides extensions to the field types, a mechanism should be provided for adding and removing
attributes in the field attribute list. It should suffice to have the registry program generate code to
initialize the field’s dimensions (both names and sizes).

3.2 High-level approach

Conceptually, the bootstrapping part of the input procedure described in the preceding section
(steps 1 — 11) is independent of the particular I/O streams that will be later used by the model to
read initial conditions, periodically update boundary conditions, and write history or restart files
(step 12); also, the bootsrapping only needs to be performed once at model start-up, regardless of
the number of streams used in the model. Toward the goal of presenting a simple stream-oriented
interface to the model developer and hiding the details of getting, assigning, and allocating blocks,
yet minimizing the amount of code to be written and maintained, we propose to split the MPAS
I/0O interface into two parts. One part will provide low-level routines to open and close files, read
and write arbitrary index ranges of individual arrays, read and write attributes, etc., with the
level of abstraction similar to that of the netCDF or PIO interfaces. The second, high-level part
of the I/0O interface will provide routines for creating a stream, adding MPAS field-types to the
stream, and reading or writing the stream. The high-level routines will work with the derived data
types for fields and blocks defined in the mpas_grid_types module, and their functionality will be
built on the functionality provided by the low-level interface, which will be used principally during
bootstrapping.

One important consequence of allowing the user to define an arbitrary set of streams, in light of
the need for a bootstrapping procedure, is that some file containing the information needed by the
bootstrapping procedure must always be designated by the user. The responsibility for meeting
this requirement will be taken on by the run-time I/O specification module, described in Item 3 of
the Introduction.

3.3 High-level interface description

The high-level interface is expected to be the primary interface to MPAS I/O for the user (i.e.,
model developer), assuming the bootstrapping procedure needed to partition the global mesh and
allocate blocks has been done. Using the interface described in this section, a typical set of calls to
read a stream might look something like the following.

call MPAS_io_init(dminfo, 16, 32, ierr) ! From the "low-level" interface
call MPAS_createStream(init, ’x1.10242.init.nc’, &
MPAS_STREAM_PNETCDF, MPAS_STREAM_INPUT, O, ierr)
call MPAS_streamAddField(init, theta, ierr)
call MPAS_streamAddField(init, u, ierr)
call MPAS_streamAddField(init, w, ierr)
call MPAS_streamAddField(init, qv, ierr)
call MPAS_streamAddField(init, qc, ierr)
call MPAS_streamAddField(init, qr, ierr)
call MPAS_readStream(init, 1, ierr)
call MPAS_readStreamAtt(init, ’on_a_sphere’, isSphericalGrid, ierr)
call MPAS_readStreamAtt(init, ’sphere_radius’, radius, ierr)
call MPAS_closeStream(init, ierr)
call MPAS_io_finalize(ierr) ! From the "low-level" interface

A typical set of calls to write a stream might look like the following.

call MPAS_io_init(dminfo, 16, 32, ierr) ! From the "low-level" interface

call MPAS_createStream(init, ’x1.10242.output.nc’, &
MPAS_STREAM_PNETCDF, MPAS_STREAM_OUTPUT, 1, ierr)

call MPAS_streamAddField(init, theta, ierr)

call MPAS_streamAddField(init, u, ierr)

call MPAS_streamAddField(init, w, ierr)

call MPAS_streamAddField(init, qv, ierr)

call MPAS_streamAddField(init, qc, ierr)

call MPAS_streamAddField(init, qr, ierr)

call MPAS_writeStreamAtt(init, ’on_a_sphere’, isSphericalGrid, ierr)

call MPAS_writeStreamAtt(init, ’sphere_radius’, radius, ierr)

call MPAS_writeStream(init, 1, ierr)

call MPAS_closeStream(init, ierr)

call MPAS_io_finalize(ierr) ! From the "low-level" interface

In the above read and write usage examples, it should be noted that the variable attributes are
handled automatically by the stream layer, where any variable attributes defined in a field type
will be attached to the corresponding array in the output file, and any variable attributes attached
to an array in the input file will be added to the attribute list for the array’s corresponding field
type.

One point not obvious from the interface description concerns streams that have a mix of time-
varying and time-invariant fields. For such streams, the time-invariant fields will be read only on
the first call to MPAS readStream for the stream; subsequent calls to MPAS _readStream will only
read the specified time frame for time-varying fields. Similarly, calls to MPAS_writeStream will
only write time-invariant fields on the first call for the stream, or whenever the specified number of
frames per file has been exceeded and a new output file must be created; thus, for output streams,
every file created from that stream will contain a copy of the time-invariant fields.

Although there are routines for reading and writing global attributes, no analogous routines
exist in the high-level interface for variable attributes. In the proposed design, the set of variable
attributes is fixed as those attributes in the io_info type described in the mpas_grid_types module;
the values of these attributes are automatically written and read when a stream is written or read.
The rationale behind this decision is that, while global attributes may frequently be changed to
reflect new information that needs to be carried around with a dataset, the variable attributes are
more likely to be fixed to meet, e.g., CF metadata conventions.

subroutine
MPAS createStream(stream, filename, io_format, io_direction,
frames_per file, ierr)

Creates a new I/O stream, to which fields can be added before reading or writing the stream. For
input streams, the number of frames per file must be 0 or 1, and for output streams the number
of frames per file can be any number > 0; if frames_per_file > 0, the first timestamp in the file will
be inserted automatically into the filename based on the value of mesh%xtime.

Input

10

character (len=%*) :: filename — The name of the file to which the stream will be connected; if
to_direction is MPAS_STREAM_INPUT, filename must refer to an existing file

integer :: io_format — The form of the stream, either MPAS_.STREAM_NETCDF or
MPAS_STREAM_PNETCDF

integer :: io_direction — Whether the stream is an input or output stream, specified with either
of the constants MPAS_STREAM_INPUT, MPAS_STREAM_OUTPUT

integer :: frames_per_file — For time-varying fields, the mazimum number of time frames that
can exist in a file for the stream; 0 indicates an unlimited number of frames

Output
type(MPAS_Stream_type) :: stream — The newly created 1/0 stream

integer, optional :: ierr — The return error code

subroutine

MPAS streamAddField(stream, field, ierr)

Adds an MPAS field type to the set of fields in the stream; the field can be any of the field types
defined in the mpas_grid_types module, e.g., field2DReal.
Input

type(MPAS _Stream_type) :: stream — An MPAS stream previously created with a call to
MPAS_createStream

type(field2DReal) :: field — The field to be added to the stream

Output

integer, optional :: ierr — The return error code

subroutine

MPAS readStream(stream, frame, ierr)

Reads all fields associated with the stream; for time-varying fields, the field will be read at the
time-frame specified by the frame argument.
Input

type(MPAS_Stream_type) :: stream — The I/O stream to read

integer :: frame — For time-varying fields, the time frame to be read; ignored for time-invariant

fields

11

Output

integer, optional :: ierr — The return error code

subroutine

MPAS writeStream (stream, frame, ierr)

Writes all fields associated with the stream; for time-varying fields, the field will be written at the
time-frame specified by the frame argument.

Input
type(MPAS_Stream_type) :: stream — The 1/O stream to write

integer :: frame — For time-varying fields, the time frame to be written

Output

integer, optional :: ierr — The return error code

subroutine

MPAS readStreamAtt(stream, attName, attValue, ierr)

Reads a global attribute from the stream; the type of the attribute in the stream must match the
type of the attValue argument.
Input

type(MPAS_Stream_type) :: stream — The I/0 stream from which the attribute will be read

character (len=%) :: attName — The name of the attribute to read

Output

various types :: attValue — The value of the attribute

integer, optional :: ierr — The return error code

subroutine

MPAS writeStreamAtt(stream, attName, attValue, ierr)

Writes a global attribute to the stream, with the type of the attribute determined by the type of
the attValue argument.

12

Input
type(MPAS Stream_type) :: stream — The I/O stream to which the attribute will be written
character (len=*) :: attName — The name of the attribute to write

various types :: attValue — The attribute value to be written

Output

integer, optional :: ierr — The return error code

subroutine

MPAS closeStream(stream, ierr)
Closes an I/O stream.

Input
type(MPAS _Stream_type) :: stream — The I/O stream to be closed

Output

integer, optional :: ierr — The return error code

3.4 Low-level interface description

The main purpose of the low-level MPAS I/0O interface is to support the bootstrapping procedure
at model start-up and to support the functionality of the high-level I/O interface (i.e., to allow the
high-level interface to be implemented using a package-independent interface). Of course, if the
user requires a greater level of control over the reading or writing of a file, the low-level interface
could in principle be used directly without tying the resulting user code to a particular external
package (e.g., PIO or netCDF).

subroutine

MPAS o init(dminfo, io_task_count, io_task stride, ierr)

Initializes the MPAS I/0 layer; this routine must be called once by every task before any subsequent
calls to MPAS I/0 routines are made.

Input

type(dm_info) :: dminfo — The dminfo structure returned by the mpas_dmpar module

13

integer :: io_task_count — The number of 1/0 tasks to use when reading and writing streams
integer :: io_task_stride — The stride between I/0 tasks

Output

integer, optional :: ierr — The return error code

function

MPAS io_open(filename, mode, ioformat, ierr)
Opens a file, either for reading or writing, using the specified file-level format.

Return value

A handle (of type MPAS_ 10 _Handle_type) to the opened file to be used in subsequent calls to
the MPAS low-level I/O layer.
Input

character (len=%*) :: filename — The name of the file to open

integer :: mode — Fither of the constants MPAS_-IO_READ or MPAS_IO_WRITE, specifying
whether the file is to be opened for reading or writing

integer :: ioformat — The format of the file, either MPAS_IO_NETCDF or MPAS_IO_PNETCDF

Output

integer, optional :: ierr — The return error code

subroutine

MPAS io_inq_dim(handle, dimname, dimsize, ierr)
Returns the value of a dimension in a file opened for reading.

Input
type(MPAS_10_Handle_type) :: handle — An MPAS file handle

character (len=%*) :: dimname — The name of the dimension

Output

integer :: dimsize — The size of the dimension

integer, optional :: ierr — The return error code

14

subroutine

MPAS io_inq unlimited dim(handle, dimname, ierr)

Returns the name of the unlimited dimension in the file. If the file does not contain an unlimited
dimension, ierr will be set to MPAS_IO_ERR_NO_UNLIMITED_DIM

Input
type(MPAS_ IO _Handle_type) :: handle — An MPAS file handle

Output

character (len="*) :: dimname — The name of the unlimited dimension

integer, optional :: ierr — The return error code

subroutine

MPAS io_def dim(handle, dimname, dimsize, ierr)

Sets the value of a dimension in a file opened for writing.

Input
type(MPAS_10_Handle_type) :: handle — An MPAS file handle

character (len="*) :: dimname — The name of the dimension
integer :: dimsize — The size of the dimension; the constant MPAS_IO_UNLIMITED_DIM

indicates an unlimited (record) dimension; only one unlimited dimension may be defined
in a file
Output

integer, optional :: ierr — The return error code

subroutine

MPAS io_inq_var(handle, fieldname, fieldtype, ndims, dimnames, dimsizes,
ierr)

Returns information (determined by the optional parameters passed to the routine) about a variable
in a file opened for reading.

Input

15

type(MPAS_10_Handle_type) :: handle — An MPAS file handle
character (len=%*) :: fieldname — The name of the field

Output

integer, optional :: fieldtype — The type of the field, identified by one of the module constants
MPAS_IO_REAL, MPAS_IO_INTEGER, or MPAS_IO_LOGICAL

integer, optional :: ndims — The dimensionality of the field

character (len=64), dimension(:), pointer, optional :: dimnames — An array of dimension
names for the field, which will be allocated by the routine with size ndims

integer, dimension(:), pointer, optional :: dimsizes — An array of dimension sizes for the field,
which will be allocated by the routine with size ndims

integer, optional :: ierr — The return error code

subroutine

MPAS io_def var(handle, fieldname, fieldtype, dimnames, ierr)

Defines a variable in a file opened for writing. The dimensionality of the field is determined by the
size of the dimnames argument.

Input
type(MPAS_10_Handle_type) :: handle — An MPAS file handle
character (len=%*) :: fieldname — The name of the field

integer :: fieldtype — The type of the field, identified by one of the module constants MPAS_IO_REAL,
MPAS_IO_INTEGER, MPAS_IO_LOGICAL

character (len=64), dimension(:) :: dimnames — An array of dimension names, all of which
must have been defined previously with calls to MPAS_io_def-dim(), with the size of the
array determining the dimensionality of the field

Output

integer, optional :: ierr — The return error code

subroutine

MPAS io_get_var_indices(handle, fieldname, indices, ierr)

Returns the global indices into the decomposed outermost dimension that will be read by the MPI
task for the specified field. Each global index must be specified by at most one task.

Input

16

type(MPAS_10_Handle_type) :: handle — An MPAS file handle
character (len=%*) :: fieldname — The name of the field

Output

integer, dimension(:), pointer :: indices — An array giving the global indices that will be read
on this task for the field; the routine will allocate the array to match the size of the index
set to be returned

integer, optional :: ierr — The return error code

subroutine

MPAS io_set_var_indices(handle, fieldname, indices, ierr)

Sets the global indices into the decomposed outermost dimension that will be read by the MPI task
for the specified field. Each global index must be specified by at most one task.
Input

type(MPAS 10 _Handle_type) :: handle — An MPAS file handle

character (len=%*) :: fieldname — The name of the field

integer, dimension(:) :: indices — An array of global indices to be written by this task for the
field

Output

integer, optional :: ierr — The return error code

subroutine

MPAS io_set_frame(handle, frame, ierr)

Sets the unlimited dimension index (frame) to be read for variables that have an unlimited dimen-
sion.

Input
type(MPAS_10_Handle_type) :: handle — An MPAS file handle

integer :: frame — The frame number (beginning with 1 for the first frame)

Output

integer, optional :: ierr — The return error code

17

subroutine

MPAS io_advance_frame(handle, ierr)

Increments the unlimited dimension index (frame) to be read for variables that have an unlimited
dimension.

Input
type(MPAS_ IO _Handle_type) :: handle — An MPAS file handle

Output

integer, optional :: ierr — The return error code

subroutine

MPAS io_get_var(handle, fieldname, array, ierr)

Reads the part of a field determined by the global indices that were previously specified in a call to
MPAS _io_set_var_indices(); the size of the outer-most dimension of the array argument must match
the size of the index array passed to a call to MPAS_io_set_var_indices() for the field. This is an
overloaded routine, and the type of the array argument must match the type of the field in the file.

Input
type(MPAS 10 _Handle_type) :: handle — An MPAS file handle
character (len=%*) :: fieldname — The name of the field

Output
various types, dimension(:) :: array — The part of the field to be read by this task
integer, optional :: ierr — The return error code

subroutine

MPAS io_put_var(handle, fieldname, array, ierr)

Writes the part of a field determined by the global indices that were previously specified in a call to
MPAS io_set_var_indices(); the size of the outermost dimension of the array argument must match
the size of the index array passed to a call to MPAS_ io_set_var_indices() for the field. This is an
overloaded routine, and the type of the array argument will determine the type of the field written
to the file.

18

Input
type(MPAS 10 _Handle_type) :: handle — An MPAS file handle
character (len=%*) :: fieldname — The name of the field

various types, dimension(:) :: array — The part of the field to be written by this task

Output

integer, optional :: ierr — The return error code

subroutine

MPAS io_get_att(handle, attName, attValue, fieldname, ierr)

Returns the value of an attribute from a file. If a fieldname is specified, the attribute is a variable
attribute; otherwise, the attribute is a global attribute. This is an overloaded routine, and the type
of the attValue argument must match the type of the attribute in the file.

Input
type(MPAS_10_Handle_type) :: handle — An MPAS file handle

character (len=%) :: attName — The name of the attribute

character (len=%*), optional :: fieldname — If present, the name of the field to which the attribute
s attached

Output

various types :: attValue — The value of the attribute

integer, optional :: ierr — The return error code

subroutine

MPAS io_put_att(handle, attName, attValue, fieldname, ierr)

Sets the value of an attribute in a file. If a fieldname is specified, the attribute is a variable attribute;
otherwise, the attribute is a global attribute. This is an overloaded routine, and the type of the
attValue argument will determine the type of the attribute written to the file.

Input
type(MPAS 10 _Handle_type) :: handle — An MPAS file handle
character (len=*) :: attName — The name of the attribute

various types :: attValue — The value of the attribute

19

character (len=%*), optional :: fieldname — If present, the name of the field for which attName
s an attribute

Output

integer, optional :: ierr — The return error code

subroutine

MPAS o _close(handle, ierr)

Closes a file that was previously opened with a call to MPAS _io_open().
Input
type(MPAS_ IO _Handle_type) :: handle — An MPAS file handle

Output

integer, optional :: ierr — The return error code

subroutine

MPAS _io_finalize(ierr)

Finalizes the MPAS I/0 layer. This routine must be the last MPAS I/O routine called once by
every task.

Output

integer, optional :: ierr — The return error code

3.5 Variable attribute routines

Under the assumption that field types will be extended to include attribute lists as in Section
the following routines are proposed to make the task of adding and removing variable attributes
easier for the user. These routines are not part of the I/O layer, but will be included in the
mpas_grid_types module with the augmented field type definitions.

subroutine

mpas_add_att(attList, attName, attValue, ierr)

20

Adds an attribute with the specified name and value to an attribute list. This is an overloaded
routine, and the type of the attValue argument will determine the type of the variable attribute.
If an attribute of the same name and type already exists for the variable, the attribute’s value will
be changed to attValue.

Input
type(att_list_type), pointer :: attList — The field to which the attribute will be added
character (len=%*) :: attName — The attribute name

integer :: various types — The attribute value

Output

integer, optional :: ierr — The return error code

subroutine

mpas_get_att(attList, attName, attValue, ierr)

Retrieves the value of an attribute with the specified name and value from an attribute list. This is
an overloaded routine, and the type of the attValue argument must match the type of the variable
attribute.

Input
type(att_list_type) :: attList — The field to which the attribute will be added

character (len=*) :: attName — The attribute name

Output
integer :: various types — The attribute value
integer, optional :: ierr — The return error code
subroutine

mpas_remove_att(attList, attName, ierr)

Removes an attribute with the specified name from an attribute list.

Input
type(att_list_type), pointer :: attList — The field to which the attribute will be added

character (len=%*) :: attName — The attribute name
Output

21

integer, optional :: ierr — The return error code

22

Chapter 4

Implementation

The new I/0 layers will be implemented incrementally, such that each stage of the implementation
can be tested in isolation before work begins on the next stage. The planned stages are as follows.

1. Implement the low-level I/O interface. The implementation of this part of the I/O layer
depends only on the mpas_dmpar module, and can therefore be implemented and tested first.

2. Extend the field derived types in the mpas_grid_types module to contain information on their
dimensions and attributes; also, implement an extensible attribute mechanism for fields as
outlined in Section and Section [3.5

3. Implement the high-level I/O interface. This layer will employ the low-level 1/O interface, as
well as the new field types, to support I/O for multiple blocks per MPI task.

23

Chapter 5

Testing

TBD

24

	Introduction
	Requirements
	Design
	Issues and constraints
	Model bootstrapping
	Super-arrays
	Variable attributes and dimensions

	High-level approach
	High-level interface description
	MPAS_createStream
	MPAS_streamAddField
	MPAS_readStream
	MPAS_writeStream
	MPAS_readStreamAtt
	MPAS_writeStreamAtt
	MPAS_closeStream

	Low-level interface description
	MPAS_io_init
	MPAS_io_open
	MPAS_io_inq_dim
	MPAS_io_inq_unlimited_dim
	MPAS_io_def_dim
	MPAS_io_inq_var
	MPAS_io_def_var
	MPAS_io_get_var_indices
	MPAS_io_set_var_indices
	MPAS_io_set_frame
	MPAS_io_advance_frame
	MPAS_io_get_var
	MPAS_io_put_var
	MPAS_io_get_att
	MPAS_io_put_att
	MPAS_io_close
	MPAS_io_finalize

	Variable attribute routines
	mpas_add_att
	mpas_get_att
	mpas_remove_att

	Implementation
	Testing

