Revisions to MPAS block decomposition routines

January 30, 2012



Contents



Chapter 1

Introduction

In order to support multiple blocks of cells per MPI task, there are a number of development issues
that need to be addressed:

1. Update/extend the fundamental derived types in mpas_grid_types.F. In order for other parts
of the infrastructure to handle multiple blocks per task in a clean way, we’ll need to be
able to pass a head pointer to a field into a routine, and have that routine loop through all
blocks for that field, with information about which cells/edges/vertices in that field need to
be communicated.

2. Decide on a new MPAS I/O abstraction layer, which will provide a high-level interface to the
PIO layer for the rest of MPAS. This layer should work with blocks of fields, and make it
possible to define an arbitrary set of I/O streams at run-time.

3. Add a new module to parse a run-time I/O configuration file that will describe which fields
are read or written to each of the I/O streams that a user requests via the file. This module
will make calls to the new MPAS I/0 layer to register the requested fields for I/O in the
requested streams.

4. Update the mpas_dmpar module to support communication operations on multiple blocks
per task. This will likely involve revising the internal data structures used to define com-
munication of cells between tasks, and also require revisions to the public interface routines
themselves.

5. Modify the block_decomp module to enable a task to get a list of cells in more than one
block that it is to be the owner of. Implemented in the simplest way, there could simply be
a namelist option to specify how many blocks each task should own, and the block_decomp
module could look for a graph.info.part.n file, with n=num_blocks_per_task*num_tasks, and
assign blocks k, 2k, 3k, ..., num_blocks_per_task*k to task k.

This document concerns the last item, namely, the extensions to the block decomposition mod-
ule that will be necessary for supporting multiple blocks per task in other infrastructure modules.

For a broader scope of this project, the intent with these five previously detailed tasks is to
provide the capabilities within MPAS to support PIO and simulations where the number of blocks
in a decomposition are not equal to the number of MPI tasks. For example, a simulation could
run on 16 processors with a total of 64 blocks, as opposed to the current framework where only 16



blocks can run at 16 processors.
After these tasks are implemented shared memory parallism can be implemented at the core
level to (hopefully) improve performance, but also allow greater flexibility in terms of the parallel

infrastructre of MPAS.

As a rough timeline, these 5 tasks are planned to be completed by the end of February, 2012.



Chapter 2

Requirements

The changes to the block decomposition module should enable an MPI task to get a list of it’s
owned cells, as well as the block number each of those cells lives on within it’s task.

e The user must be able to specify the number of blocks in a simulation.

e Block decomposition modules must provide information describing the cell and block rela-
tionship for a given MPI task.

e Block decomposition modules need to be flexible enough to support multiple methods of
acquiring a decomposition.

e Block decomposition modules need to support a different number of blocks than MPI tasks,
even when they are not evenly divisible.

e Block decomposition modules should provide an interface to map a global block number to
local block number, and owning processor number.



Chapter 3
Design

We propose several changes to the block decomposition module in order to support multiple blocks
per MPI task. Currently, in order to support the case where there are multiple blocks per MPI
task a namelist parameter needs to be added that will allow these two values to differ.

First, changes to the namelist.input file include a new section called decomposition. This section
will include four parameters. The first being config number_of_blocks which is an integer represen-
tation of the number of blocks a run should use. Second is config_block_decomp_file_prefix, which
represents the path and prefix (before the .N) of the file for the block decomposition. Third is
config_proc_decomp_file_prefix representing the path and prefix (before the .Np) to the file for the
processor decomposition. Finally is config_explicit_proc_decomp which is logical and tells MPAS
to use the config_proc_decomp_file for the distribution of blocks, or to use the built in method of
distributing the blocks to processors.

config_number_of_blocks option will have a default value of 0. A value of 0 in this field means
there should be nProcs blocks, or one block for every MPI task, which is the default behavior
currently. config_block_decomp_file_prefix is read by default and config_proc_decomp_file_prefix is
only read for external block assignment, as will be described later.

Inside mpas_block_decomp.F, the mpas_block_decomp_cells_for_proc needs to be changed. To
not only read in all cells in all blocks, but also their block numbers.

The meaning of the contents of graph.info.part.N needs to change from the processor ID that
owns a cell, to the global block number for a cell. This means the file that is read in with have N
= config_ number_of_blocks.

Given a graph.info.part.N file, the global block number needs to be mapped into both an owning
processor number, and a local block id. The local block id does not need to be computed within

mpas_block_decomp_cells_for_proc as long as the mapping is available or known.

The api for mpas_block_decomp_cells_for_proc will change from

subroutine mpas_block_decomp _cells_for_proc(dminfo, &
partial_global_graph_info, local_cell_list)

to




subroutine mpas_block_decomp _cells_for_proc (dminfo, &
partial_global_graph_info, local_cell_list , blockid , &
block_start , block_count )

where local _cell _list is a list of cells owned by a processor that is sorted by local block id, block_id
is a list of global block id’s that an MPI task owns, block_start is a list of offsets in local_cell list
for the contiguous cells a block owns, and block_count is a the number of cells each block owns.

mpas_block_decomp_cells_for_proc will perform the same regardless of number of processors to
enable the use of multiple blocks on a single processor.

The block_type data structure will be extended to include the local block id. This can help
make dynamic load balancing easier for implementation at a later time. This will change

type block_type

”

#include ”block_group_members.inc

integer :: blockID ! Unique global ID number for this block

type (domain_type), pointer :: domain
type (parallel_info), pointer :: parinfo
type (block_type), pointer :: prev, next

end type block_type

to

type block_type

b

#include " block_group_members.inc

integer :: blockID ! Unique global ID number for this block
integer :: localBlockID

type (domain_type), pointer :: domain
type (parallel_info), pointer :: parinfo
type (block_type), pointer :: prev, next

end type block_type

There will be three additions to the public interface of mpas_block_decomp.F The first adds
the routine mpas_get_local _block_id which takes has three arguments. As input it takes the domain
information and the global block number, and as output it provides the local block number on a
processor. This allows other parts of MPAS to determine what local block number a global block
is, even if it’s on another processor.




The second addition to the public interface is the subroutine mpas_get_owning_proc. This sub-
routine takes as input the domain information and the global block number, and as output provides
the MPI task number that owns the block. This allows other parts of MPAS to determine from a
block number which MPT task it needs to communicate with to read/write this block.

The third public routine is called mpas_get_blocks_per_proc. This routine takes as input the
domain information and a processor number. On output blocks_per_proc contains the number of
blocks a processor owns.

In addition to the ad-hoc method of determining which blocks belong to which processors, a
file based method will be added. This method will be toggelable by a namelist option named con-
fig_explicit_proc_decomp, which will be logical. If this option is true, a file (config_proc_decomp_file_prefix.N)
will be provided, where N is the number of processors. This file will have number of blocks lines,
and each line will say what processor should own the block. This file can be created using metis
externally.



Chapter 4

Implementation

Implementation of the mpas_get_blocks_per_proc subroutine is as follows:

subroutine mpas_get_blocks_per_proc(dminfo, proc_number, blocks_per_proc

type(domain_info), intent(in) :: dminfo

integer , intent(in) :: proc_number

integer , intent(out) :: blocks_per_proc

integer :: blocks_per_proc_min, even_blocks, remaining_blocks

blocks_per_proc_min = config_number_of_blocks / dminfo % nprocs

remaining _blocks = config_.number_of_blocks — &
(blocks_per_proc_min x dminfo % nprocs)

even_blocks = config_number_of_blocks — remaining_blocks

blocks_per_proc = blocks_per_proc_min

if (proc_number .le. remaining_blocks) then
blocks_per_proc = blocks_per_proc + 1
end if

end subroutine mpas_get_blocks_per_proc

~—



Implementation of the mpas_get_local_block_id is as follows:

subroutine mpas_get_local_block_id (dminfo, &
global_block_number , local_block_number)

type(domain_info), intent(in) :: dminfo

integer, intent(in) :: global_block_number

integer, intent(out) :: local_block_number

integer :: blocks_per_proc_min, even_blocks, remaining_blocks

blocks_per_proc_min = config_number_of_blocks / dminfo % nprocs

remaining _blocks = config_.number_of_blocks — &
(blocks_per_proc_min x dminfo % nprocs)

even_blocks = config_number_of_blocks — remaining_blocks

if (global_block_.number > even_blocks) then

local_block_number = blocks_per_proc_min — 1
else

local_block_number = mod(global_block_id , blocks_per_proc_min)
end if

end subroutine mpas_get_local_block_id




Implementation of the mpas_get_owning_proc routine is as follows:

subroutine mpas_get_owning_proc(dminfo, &
global_block_number , owning_proc)
type(domain_info), intent(in) :: dminfo
integer, intent(in) :: global_block_-number
integer , intent(out) :: owning_proc
integer :: blocks_per_proc_min, even_blocks, remaining_blocks

blocks_per_proc_min = config_number_of_blocks / dminfo % nprocs
remaining _blocks = config_.number_of_blocks — &

(blocks_per_proc_min x dminfo % nprocs)
even_blocks = config_number_of_blocks — remaining_blocks

if (global_block_.number > even_blocks) then

owning _proc = global_block_number — even_blocks
else

owning_proc = global_block_number / blocks_per_proc_min
end if

end subroutine mpas_get_owning_proc

10



Chapter 5

Testing

Only limited testing can be performed on this task. Since this task alone doesn’t allow the use of
multiple blocks the only testing that can really be performed is to provide a mis-matched number
of blocks and MPI tasks and verify the block decomposition routines provide the correct block
numbers for a processor and put the cells in their correct block numbers.

11



