
Revisions to MPAS block decomposition routines

January 24, 2012

Contents

1 Introduction 2

2 Requirements 3

3 Design 4

4 Implementation 6

1

Chapter 1

Introduction

In order to support multiple blocks of cells per MPI task, there are a number of development issues
that need to be addressed:

1. Update/extend the fundamental derived types in mpas grid types.F. In order for other parts
of the infrastructure to handle multiple blocks per task in a clean way, we’ll need to be
able to pass a head pointer to a field into a routine, and have that routine loop through all
blocks for that field, with information about which cells/edges/vertices in that field need to
be communicated.

2. Decide on a new MPAS I/O abstraction layer, which will provide a high-level interface to the
PIO layer for the rest of MPAS. This layer should work with blocks of fields, and make it
possible to define an arbitrary set of I/O streams at run-time.

3. Add a new module to parse a run-time I/O configuration file that will describe which fields
are read or written to each of the I/O streams that a user requests via the file. This module
will make calls to the new MPAS I/O layer to register the requested fields for I/O in the
requested streams.

4. Update the mpas dmpar module to support communication operations on multiple blocks
per task. This will likely involve revising the internal data structures used to define com-
munication of cells between tasks, and also require revisions to the public interface routines
themselves.

5. Modify the block decomp module to enable a task to get a list of cells in more than one
block that it is to be the owner of. Implemented in the simplest way, there could simply be
a namelist option to specify how many blocks each task should own, and the block decomp
module could look for a graph.info.part.n file, with n=num blocks per task*num tasks, and
assign blocks k, 2k, 3k, ..., num blocks per task*k to task k.

This document concerns the last item, namely, the extensions to the block decomposition module
that will be necessary for supporting multiple blocks per task in other infrastructure modules.

2

Chapter 2

Requirements

The changes to the block decomposition module should enable an MPI task to get a list of it’s
owned cells, as well as the block number each of those cells lives on within it’s task.

• Domain decomposition information needs to be read from a file based on number of total
blocks as opposed to number of MPI tasks.

• Block decomposition routines need to provide a list of cells in a on a processor, as well as a
list of blocks on a processor, and the cells that make up each block.

3

Chapter 3

Design

We propose several changes to the block decomposition module in order to support multiple blocks
per MPI task. Currently, in order to support the case where there are multiple blocks per MPI
task a namelist parameter needs to be added that will allow these two values to differ.

The namelist.input files will have the value config number of blocks added as an integer field
to the io section. This option will have a default value of 1.

Inside mpas block decomp.F, the mpas block decomp cells for proc needs to be changed. To
not only read in all cells in all blocks, but also their block numbers.

The meaning of the contents of graph.info.part.N needs to change from the processor ID that
owns a cell, to the global block number for a cell. This means the file that is read in with have N
= config number of blocks.

Given a graph.info.part.N file, the global block number needs to be mapped into both an owning
processor number, and a local block id. The local block id does not need to be computed within
mpas block decomp cells for proc as long as the mapping is available or known.

The api for mpas block decomp cells for proc will change from

subroutine mpas block decomp cells for proc(dminfo, partial global graph info, local cell list)

to

subroutine mpas block decomp cells for proc(dminfo, partial global graph info, local cell list, local block list)

where local cell list is a list of cells owned by a processor, and local block list is a list of global
block ids that describes which block owns a cell.

mpas block decomp cells for proc will perform the same regardless of number of processors to
enable the use of multiple blocks on a single processor.

4

To begin, the mapping from global block id to owning processor number and local block number
is as follows.

b l o c k s p e r p r o c = con f i g number o f b l o ck s / dminfo % nprocs

l o c a l b l o c k i d = mod(g l o b a l b l o c k i d , b l o c k s p e r p r o c)
owning proc = (g l o b a l b l o c k i d) / b l o c k s p e r p r o c

An array called global block list needs to be added, which will be similar to global cell list ex-
cept that instead of storing cell ids it will store global block ids that should be paired with the
cell id. For example, global block list(10) gives the global block number that owns the cell from
global cell list(10).

An additional mpas dmpar scatter ints needs to be added to communicate the global block list
into nprocs copies of local block list containing a list of the global block ids that a processor owns.

5

Chapter 4

Implementation

Should we outline a plan for implementing these changes?

6

