Redesign of MPAS data structures

December 20, 2011



Contents

1 Introduction
2 Requirements

3 Design



Chapter 1

Introduction

In order to support multiple blocks of cells per MPI task, there are a number of development issues
that need to be addressed

1. Update/extend the fundamental derived types in mpas_grid_types.F. In order for other parts
of the infrastructure to handle multiple blocks per task in a clean way, we’ll need to be
able to pass a head pointer to a field into a routine, and have that routine loop through all
blocks for that field, with information about which cells/edges/vertices in that field need to
be communicated.

2. Decide on a new MPAS I/O abstraction layer, which will provide a high-level interface to the
PIO layer for the rest of MPAS. This layer should work with blocks of fields, and make it
possible to define an arbitrary set of I/O streams at run-time.

3. Add a new module to parse a run-time I/O configuration file that will describe which fields
are read or written to each of the I/O streams that a user requests via the file. This module
will make calls to the new MPAS I/0 layer to register the requested fields for I/O in the
requested streams.

4. Update the mpas_dmpar module to support communication operations on multiple blocks
per task. This will likely involve revising the internal data structures used to define com-
munication of cells between tasks, and also require revisions to the public interface routines
themselves.

5. Modify the block_decomp module to enable a task to get a list of cells in more than one
block that it is to be the owner of. Implemented in the simplest way, there could simply be
a namelist option to specify how many blocks each task should own, and the block_decomp
module could look for a graph.info.part.n file, with n=num_blocks_per_task*num_tasks, and
assign blocks k, 2k, 3k, ..., num_blocks_per_task*k to task k.

This document concerns the first item, namely, the extensions to the derived data types that
will be necessary for supporting multiple blocks per task in other infrastructure modules.



Chapter 2

Requirements

The changes to the derived data types used throughout the MPAS infrastructure and cores should
enable I/O and communication routines to elegantly handle multiple blocks per MPI task.

e Routines must be able to traverse the list of blocks for any field that is owned by a task
without having to explicitly dereference that field by name; this ensures that infrastructure
routines can remain generic, in the sense that they never contain hard-wired references to

fields.

e A block for a field must be able to access the parallel information (halo communication lists,
as well as MPI communicator) that it is associated with so that such information is never
explicitly passed with the field to infrastructure subroutines. This requirement will simplify
the argument lists for infrastructure routines, and eliminate the possibility that a user might
pass mismatched or invalid communication information for a field to an infrastructure routine.



Chapter 3
Design

We propose to extend the existing data structures in MPAS with additional pointers between fields
of the same type, and also with pointers within fields to the appropriate communication lists for that
field. The proposed changes are highlighted in the field type definition below; other type definitions
are given for reference, and the figure below illustrates graphically the hierarchy of DDTs.

domain dminfo

N N
J

block - block / :
parinfo \ parinfo \ ]
group type (e.g., mesh, state) group type (e.g., mesh, state)
field (e.g., u) - field (e.g., u) -
io_info > io_info
€

Figure 3.1: An illustration of the current DDT structure: existing back-pointers and previous/next
pointers are drawn in light arrows; new pointers to be added between field blocks are drawn heavy
arrows.

Besides the simple additions to the field types (field1DReal, field2DReal, etc.) described here,
we will also need to extend the infrastructure routines that deal with allocating, deallocating, and
reading in fields to be aware that there may be multiple blocks for a field; however, this work will
be addressed by work on items 2, 4, and 5 identified in the Introduction to this document.



! Derived type for storing list of blocks from a domain

! to be handled by a process
type domain_type
type (block_type), pointer :: blocklist

! Also store parallelization info here
type (dm_info), pointer :: dminfo
end type domain_type

type dm_info
integer :: nprocs, my_proc.id, comm, info
end type dm_info

! Derived type for storing part of a domain;

! unit of work for a process
type block_type

b

#include " block_group_members.inc

type (domain_type), pointer :: domain
type (parallel_info ), pointer :: parinfo
type (block_type), pointer :: prev, next

end type block_type

used as a basic

! Type for storing (possibly architecture specific) information

! concerning parallelism
type parallel_info

type (exchange_list), pointer :: cellsToSend
type (exchange_list), pointer :: cellsToRecv
type (exchange_list), pointer :: edgesToSend
type (exchange_list), pointer :: edgesToRecv
type (exchange_list), pointer :: verticesToSend
type (exchange_list), pointer :: verticesToRecv

end type parallel_info

|
|
|
|

! Derived type for storing fields
type field3DReal

type (block_type), pointer :: block
real (kind=RKIND), dimension(:,:,:), pointer :: array
type (io_info ), pointer :: ioinfo

type (field3DReal), pointer :: prev, next
type (exchange_list), pointer :: sendList

type (exchange_list), pointer :: recvList
end type field3DReal




! Derived type describing
type io_info

character (len=1024) ::

integer , dimension (4)
integer , dimension (4)

logical :: input
logical :: sfc
logical :: restart
logical :: output

end type io_info

info for doing 1/0 specific to a field

fieldName
start
count




