A time manager for MPAS

MPAS Development Team

April 21, 2011



Contents

1 Summary 3
2 Requirements| 4
[2.1 General date/time tracking| . . . . . .. ... ... L Lo 4
[2.1.1  Set the starting and ending date/time| . . . . . . ... ... 4
[2.1.2  Determine whether the starting or ending time has been reached . . . . . . . 4
2.1.3 Set the default time incrementl . . . . . . .. ... ... ... 4
[2.1.4  Advance the date/time by an arbitrary time increment|. . . . . . . ... ... 5
[2.1.5 Handle both forward and backward time increments . . . . . ... ... ... 5
[2.1.6  Pertorm time computation with no round-off using exact arithmetic| . . . . . D

2.2 Notificationsl . . . . . . . . . e 5
221 Add notificationsl . . . . . . . . ..o 5
222 One-time notification] . . . . ... . ... ... o oL 5
[2.2.3  Recurring notification| . . . . . . .. ... . 5
[2.2.4  Query for notifications| . . . . . . . ... ... o 6
225 Clear anotificationl. . . . . . . . . .. ... oo oo 6
2.2.6  Remove a notificationl . . . . . . . . .. ... o 6

2.3 Time instants and time intervalsl . . . . . . ... ... L Lo 6
231 Timearithmetid . . . . . ... o 0 o o o 6

2.4 Calendars and unitsl . . . . . . . . ... 6
241 Calendars . . . . . . .. 6
A2 UNItE . . . o 7
243 Unit conversionl . . . . . . . . o o e e e e 7

8
[3.1 General date/time tracking| . . . . . . . . . . ... 8
IMPAS createClockl . . . . . . . o o 8
IMPAS _destroyClock| . . . . . . . . . 9
IMPAS 1sClockStartTime] . . . . . . . . . . .. . 9
IMPAS 1sClockbEmndTimel . . . . . . . o oo oo 9
IMPAS setClockDirection|. . . . . . . . . . . .. 10
IMPAS_getClockDirection| . . . . . . . . .. ... 10
IMPAS setClockTimeStep| . . . . . . . . . o . o 10
IMPAS_getClockTimedStep| . . . . . . o o o o o o o o 11
[MPAS advanceClockl . . . . . . . . . .. 11
IMPAS setClockTime| . . . . . . .. o o 12
IMPAS _getClockTime] . . . . . . . . . . . . 12




IMPAS getTime] . . . . . o o o o
IMPAS setTimelntervall . . . . . . ... o0 o
IMPAS get'Timelntervall. . . . . . .. .0 0
3.4 Calendars and unitsl . . . . . . . . ..o

[4 Proposed Plan for Implementation|

[6 Testing and Validation|
b.1  Testing and Validation: XXX| . . . . . . . ... ... o




Chapter 1

Summary

In the current MPAS code, time is simply tracked as the number of time steps since the beginning
of the simulation; with the time step length also known, the code can multiply the time step length
by the number of steps taken to find the elapsed time. However, because there is no calendar date
and time associated with the start of the model simulation, there is no concept of ‘real time’ in a
simulation — that is, a simulation has no way of distinguishing whether it is currently, say, January
or July.

When performing real-data simulations of the atmosphere (and perhaps of other physical do-
mains, too), certain physics schemes must know the calendar date and time at each step in the
model integration. For example, a short-wave radiation scheme needs to know the solar zenith
angle, which it computes from the date and time of day. To someone looking at model output, it
would also be important to know the date and time for which a particular set of fields is valid;
without such information, validating model simulations becomes nearly impossible.

Besides lacking the date and time at any point in a model simulation, the current MPAS time-
keeping method provides no unified mechanism for identifying when arbitrarily defined points in
the simulation have been reached, at which time some action may be taken. For example, the
work of determining whether it is time to perform I/O currently falls on the driver code, which
uses the current time step modulo some output interval specified in time steps; adjustments to
the model time step are therefore usually accompanied by changes to the output interval. Using
a sophisticated, future I/O subsystem in MPAS, we may like to perform I/O on multiple streams
(e.g., files) at different intervals specified in natural time units rather than model time steps; in
such cases, the simple-minded approach that is currently used becomes cumbersome, especially if
the future I/O implementation is to be run-time configurable in terms of the number of streams.

To permit progress on the addition of physics schemes and the re-implementation of the MPAS
I/O sub-system in a more general and robust way, this document proposes the addition of a new
time management system, which will be general enough to be used throughout the MPAS code.
This new system should be useful for tracking the date and time, providing notifications when
pre-specified points in time have been reached, and tracking the progress through time of a model
simulation (i.e., model time-stepping).



Chapter 2

Requirements

Date last modified: 2011/03/28
Contributors: Michael Duda, Phil Jones

2.1 General date/time tracking

The most fundamental requirement for the new MPAS time management system is the ability to
track the current date/time through the course of a model simulation.

2.1.1 Set the starting and ending date/time

Recognizing that there is always a finite amount of wallclock time that can be devoted to any
simulation, it follows that every simulation is associated with a starting and ending simulation
date/time. The MPAS time manager is required to maintain these two points explicitly, since their
relation to the current simulation time determines whether a simulation has completed or not. In
the case of ‘cycled’ simulations, which in principle could be extended indefinitely given an infinite
amount of computer time, the ending date/time represents the end of the simulation cycle currently
being run. It must be possible for the user to reset the starting or ending time at any point during
the model simulation.

2.1.2 Determine whether the starting or ending time has been reached

Determining whether the ending time has been reached or exceeded is a requirement for knowing
when integration should stop in MPAS. For integration backward in time, the same requirement
holds, except the role of the ending time is fulfilled by the starting time.

2.1.3 Set the default time increment

An MPAS simulation generally makes use of a fixed, default time step length, and the time manager
must be able to record this time step so that the date/time can be incremented without the need
to specify the increment explicitly each time step. It must also be possible for the user to reset the
default time step at any point during the model simulation. The user must be able to specify this
default time increment as a time interval in any supported unit (see Units).



2.1.4 Advance the date/time by an arbitrary time increment

In future, we may like to implement the ability in MPAS to vary the time step over the course of a
simulation, according to criteria such as the maximum Courant number in the previous time step;
therefore, the time manager must be able to advance the date/time by an arbitrary time increment
in addition to incrementing by the default time step.

2.1.5 Handle both forward and backward time increments

The ability to ‘advance’ the date/time by a negative time increment — that is, to step backward
through time — may be useful for further model development. For example, the addition of a digital
filtering initialization scheme would require the ability to integrate both forward and backward in
time, and, therefore, to increment the date/time with both positive and negative increments. The
MPAS time manager must support both forward and backward increments.

2.1.6 Perform time computation with no round-off using exact arithmetic

The ability of the time manager to track time using exact arithmetic is necessary so that, for
example, events take place at the proper time, and not at the time step before or after due to
rounding errors in the date/time computation. Simulations of up to 100,000 years without roundoff
accumulation are required.

2.2 Notifications

Upcoming developments in MPAS will require the ability to determine when pre-specified points
in the model simulation have been reached. For example, we may want to update tendencies from
physics parameterizations periodically at an interval longer than the time step. Another planned
development that would require the ability to perform actions at pre-determined points is in the
I/O system, where we may want to read (in the case of boundary conditions, for example) or write
fields to any of several I/O streams periodically. In general, we require the time manager to have
the ability to provide notifications to code when specified points in time have been reached.

2.2.1 Add notifications

Clearly, the ability to specify the instants in time where notifications are to be provided is required
of the time manager. It must be possible to add notifications at any point in program execution,
so that not all notifications need to be added at initialization time.

2.2.2 One-time notification

The time manager will support notifications that only ring once for a particular time.

2.2.3 Recurring notification

The time manager must support the setting of notifications which will recur with a fixed period,
since some events (e.g., boundary updates, diagnostics, I/O) occur periodically.



2.2.4 Query for notifications

The user must be able to query whether a notification or alarm is “ringing”. It should be possible
to query whether any alarms are currently ringing, or whether any alarms will begin to ring within
a specified time interval from the current time.

2.2.5 Clear a notification

In order that a particular notification not be provided by the time manager in subsequent queries, it
must be possible to clear a notification. Clearing an instance of a periodically recurring notification
will only clear that particular instance.

2.2.6 Remove a notification

For both periodic and ‘one-off” notifications, it must be possible to remove those notifications from
the time manager to prevent them from being provided in future queries for notifications.

2.3 Time instants and time intervals

The concepts of ‘time instants’ and ’time intervals’ are fundamental to the task of tracking time
and providing notifications, so it is necessary that the MPAS time manager be able to perform
basic manipulation of them.

2.3.1 Time arithmetic

The time manager will be able to:

e compute a new time instant given a time instant and a time interval (either negative or
positive);

e compute a new time interval as the sum or difference of two other time intervals;
e compute the (positive or negative) time interval between two time instants;

e multiply a time interval by an integer constant;

e divide a time interval by an integer constant; and

e compute the remainder (as a time interval) when dividing one time interval by another.

2.4 Calendars and units

The time manager must be able to track time in a variety of units and calendars.

2.4.1 Calendars

The time manager must, at minimum, support a Gregorian calendar, and must support the ability
to enable or disable leap years. Other calendars that may need to be supported are 360-day (30-day
equal month) calendars or Julian Day calendars.



2.4.2 Units

The time manager must support time intervals and time instants in units of hours, minutes, seconds,
days, months and years (and fractions thereof). The underlying representation can be in arbitrary
units (to support the roundoff requirements above), but user queries and arguments must support
these units.

2.4.3 Unit conversion

A set of utilities must be available to convert units for time-related quantities (e.g. days to seconds,
etc.). Some conversions may require knowledge of the calendar choice.



Chapter 3
Design

In order to make the MPAS time manager as re-usable as possible, and to facilitate incremental
implementation of the time manager in various parts of the MPAS code, we envision the MPAS
time manager as a stand-alone module that provides opaque data types for clocks (instantiations of
the time manager), time instants, and time intervals; additionally, the module will provide a set of
routines for manipulating these types. Since the internal representation of clocks, time instants, and
time intervals should remain unknown to code outside the module, we only describe the routines
to be provided by the module.

3.1 General date/time tracking

Date last modified: 2011/04/21
Contributors: Michael Duda

The routines used to create, destroy, and manipulate instantiations of the MPAS time manager
(clocks) are described below. There is no limit to the number of concurrent clocks that can be
created and used by code that employs the MPAS time manager.

subroutine
MPAS createClock(clock, calendar, startTime, timeStep, stopTime,
runDuration, ierr)

Creates a clock object given a calendar type, a starting time, a default time step, and either a stop
time or a run duration.

Input

integer :: calendar — The calendar to use for the clock, either GREGORIAN or GREGO-
RIAN_NOLEAP

MPAS _Time_type :: startTime — The start time of the clock
MPAS_Timelnterval type :: timeStep — The default time step of the clock

MPAS_Time_type, optional :: stopTime — The end time of the clock, which equals (startTime
+ runDuration)



MPAS_Timelnterval_type, optional :: runDuration — The run duration of the clock, defined

as (stopTime - startTime)

Output
MPAS _Clock_type :: clock — An initialized MPAS clock

integer :: ierr — The return error code

subroutine

MPAS destroyClock(clock, ierr)

Destroys a clock object.
Input

MPAS _Clock_type :: clock — The clock to be destroyed

Output

integer :: ierr — The return error code

function

MPAS isClockStartTime(clock, ierr)

Tells whether the current time on the clock is at or before the clock’s start time.

Return value

A logical TRUE if the current time is at or before the start time, and FALSE otherwise.

Input
MPAS _Clock_type :: clock — The clock to be queried

Output

integer :: ierr — The return error code

function

MPAS _isClockEndTime(clock, ierr)



Tells whether the current time on the clock is at or past the clock’s stop time.

Return value

A logical TRUE if the current time is at or past the stop time, and FALSE otherwise.

Input
MPAS Clock_type :: clock — The clock to be queried

Output

integer :: ierr — The return error code

subroutine

MPAS setClockDirection(clock, direction, ierr)
Sets the clock’s direction of advance to be either positive/forward or negative/backward.

Input
MPAS Clock_type :: clock — The clock whose direction is to be set
integer :: direction — FEither of the module-defined constants FORWARD or BACKWARD

Output

integer :: ierr — The return error code

subroutine

MPAS_getClockDirection(clock, direction, ierr)
Retrieves the clock’s direction of advance, either positive/forward or negative/backward.
Input

MPAS Clock_type :: clock — A clock

Output
integer :: direction — FEither of the module-defined constants FORWARD or BACKWARD

integer :: ierr — The return error code

subroutine

10



MPAS setClockTimeStep(clock, timeStep, ierr)

Sets the clock’s default time step.

Input
MPAS_Clock_type :: clock — The clock whose time step is to be set
MPAS Timelnterval _type :: timeStep — The new default time increment for the clock

Output

integer :: ierr — The return error code

subroutine

MPAS getClockTimeStep(clock, timeStep, ierr)

Retrieves the clock’s default time step.

Input
MPAS_Clock_type :: clock — A clock

Output
MPAS _Timelnterval_type :: timeStep — The clock’s default time increment

integer :: ierr — The return error code

subroutine

MPAS _advanceClock(clock, timeStep, ierr)

Advances the clock’s current time by the specified time step, or by the clock’s default time step if
no explicit step is specified.
Input

MPAS _Clock_type :: clock — The clock to be advanced

MPAS _Timelnterval_type, optional :: timeStep — A time increment to be used in place of the
clock’s default increment

Output

integer :: ierr — The return error code

11



subroutine

MPAS setClockTime(clock, clock time, whichTime, ierr)

Sets the clock’s start, stop, or current time depending on the whichTime argument.

Input
MPAS Clock_type :: clock — The clock whose time is to be set

MPAS_Time_type :: clock_time — The time instant to become the start, stop, or current time
of the clock

integer :: whichTime — Which time to set, either START_TIME, STOP_TIME, or NOW

Output

integer :: ierr — The return error code

subroutine

MPAS _getClockTime(clock, whichTime, clock_time, ierr)

Gets the clock’s start, stop, or current time, depending on the whichTime argument.

Input
MPAS _Clock_type :: clock — The clock whose time is to be retrieved
integer :: whichTime — Which time to get, either START_-TIME, STOP_TIME, or NOW

Output
MPAS Time_type :: clock_time — The start, stop, or current time of the clock

integer :: ierr — The return error code

3.2 Notifications

Date last modified: 2011/04/21
Contributors: Michael Duda

Rather than using non-intrinsic data types to represent notifications, the MPAS time manager
will identify notifications as user-specified integer ID numbers relative to clocks (i.e., the same ID
can refer to different notifications in different clocks).

subroutine

12



MPAS _addClockAlarm(clock, alarmID, alarmTime, alarmTimelnterval,

relativeToTime, recurring, ierr)

Adds an alarm to the clock, with the nature of the alarm — either ‘one-off’ or recurring — depending
on the combination of arguments.

Input
MPAS_Clock_type :: clock — The clock to which the alarm will be added
integer :: alarmID — The alarmID that will be used to identify the alarm
MPAS Time_type :: alarmTime — The time of the alarm
MPAS _Timelnterval _type :: alarmTimelnterval — The interval of the alarm
MPAS Time_type :: relativeToTime — The the base time that the interval is relative to

logical :: recurring — Whether or not the alarm is a recurring alarm

Output

integer :: ierr — The return error code

function

MPAS isAlarmRinging(clock, alarmID, interval, ierr)

Tells whether the specified alarm is ringing on the clock, or whether it will begin ringing within
the optional time interval from the present.
Return value

A logical TRUE if the alarm is ringing and FALSE otherwise.

Input
MPAS_Clock_type :: clock — The clock holding the alarm to be queried
integer :: alarmID — The alarmID to be queried

MPAS_Timelnterval_type, optional :: interval — The interval over which to consider the alarm

Output

integer :: ierr — The return error code

subroutine

MPAS removeClockAlarm(clock, alarmID, ierr)

13



Removes the specified alarm from the clock.

Input
MPAS _Clock_type :: clock — The clock from which the alarm will be removed

integer :: alarmID — The alarmID to remove from the clock

Output

integer :: ierr — The return error code

subroutine

MPAS resetClockAlarm(clock, alarmlID, ierr)

Resets the specified alarm if it is ringing.

Input
MPAS Clock_type :: clock — The clock holding the alarm to be reset

integer :: alarmID — The alarmID to be reset

Output

integer :: ierr — The return error code

subroutine

MPAS _getClockRingingAlarms(clock, nAlarms, alarmList, interval, ierr)

Returns a list of all the alarms that are currently ringing, or will begin ringing within the optional
time interval, including those that were ringing before the current time but had not been reset.
Input

MPAS _Clock_type :: clock — A clock

MPAS _Timelnterval_type :: interval — The interval over which to consider alarms

Output

integer :: nAlarms — The number of alarms returned in the alarmList
integer, dimension(MAX_ALARMS) :: alarmList — A list of IDs for alarms that are ringing

integer :: ierr — The return error code

14



3.3 Time instants and time intervals

Date last modified: 2011/03/28
Contributors: Michael Duda

Time intervals and time instants in the MPAS time manager are ‘shallow’ types, and require no
create or destroy routines. In this section, the routines used to set, get, and format time instants
and time intervals are described.

subroutine

MPAS setTime(curr_time, YYYY, MM, DD, H, M, S, S.n, S_d, dateString,
ierr)

Sets the date and time of a time instant. If a dateString is given, the integer arguments are ignored.

Input
integer, optional :: YYYY — The year
integer, optional :: MM — The month
integer, optional :: DD — The day
integer, optional :: H — The hour
integer, optional :: M — The minute
integer, optional :: S — The second
integer, optional :: S_.n — The numerator of a rational fraction of a second
integer, optional :: S_.d — The denominator of a rational fraction of a second
character(len=*), optional :: dateString — The date/time in the form YYYY-MM-DD/[_H[:M/:S]]]

Output
MPAS _Time_type :: curr_time — The time instant described by the input arguments

integer :: ierr — The return error code

subroutine

MPAS getTime(curr_time, YYYY, MM, DD, H, M, S, S.n, S d, dateString,

ierr)

Gets the date and time of a time instant. If a dateString is given, none of the integer arguments
will be set.

Input

15



MPAS _Time_type :: curr_time — A time instant

Output
integer, optional :: YYYY — The year
integer, optional :: MM — The month
integer, optional :: DD — The day
integer, optional :: H — The hour
integer, optional :: M — The minute
integer, optional :: S — The second
integer, optional :: S_.n — The numerator of a rational fraction of a second
integer, optional :: S_d — The denominator of a rational fraction of a second
character(len=%*), optional :: dateString — The date/time in the form YYYY-MM-DD_H:M:S.5SS

integer :: ierr — The return error code

subroutine

MPAS setTimelnterval(interval, YYYY, MM, DD, H, M, S, Sn, S d,
dateString, ierr)

Sets the length of a time interval. The integer arguments are cumulative; if a date string is given,
the integer arguments are ignored.

Input
integer, optional :: YYYY — The number of years in the interval
integer, optional :: MM — The number of months
integer, optional :: DD — The number of days
integer, optional :: H — The number of hours
integer, optional :: M — The number of minutes
integer, optional :: S — The number of whole seconds
integer, optional :: S_.n — The numerator of a rational fraction of a seconds
integer, optional :: S_.d — The denominator of a rational fraction of a seconds
character(len="*), optional :: dateString — The time interval in the form YYYY-MM-DD[_H[:M/:S]]]

Output

MPAS_Timelnterval_type :: interval — The time interval described by the input arguments

integer :: ierr — The return error code

16



subroutine

MPAS _getTimelnterval(interval, YYYY, MM, DD, H, M, S, S.n, S d,
dateString, ierr)

Gets the length of a time interval. If a dateString is given, none of the integer arguments will be
set.

Input
MPAS Timelnterval_type :: interval — A time interval

Output

integer, optional :: YYYY — The number of years in the interval

integer, optional :: MM — The number of months

integer, optional :: DD — The number of days

integer, optional :: H — The number of hours

integer, optional :: M — The number of minutes

integer, optional :: S — The number of whole seconds

integer, optional :: S_.n — The numerator of a rational fraction of a seconds

integer, optional :: S_.d — The denominator of a rational fraction of a seconds

character(len=%*), optional :: dateString — The time interval in the form YYYY-MM-DD_H:M:S5.55S

integer :: ierr — The return error code

In addition to the above routines, operators will be defined for the following operations:

e time = time + interval

e time = time - interval

e interval = interval + interval
e interval = interval - interval
e interval = interval % interval
e interval = time - time

e interval = interval * n

e interval = interval / n

e interval = -interval

17



3.4 Calendars and units

Date last modified: 2011/03/28
Contributors: Michael Duda

Perhaps there is nothing much to say about units?

Unit conversions are handled by the design of the interfaces for setting and getting time instants
and time intervals.

18



Chapter 4

Proposed Plan for Implementation

Date last modified: 2011/04/21
Contributors: Michael Duda

Roughly speaking, the implementation of the time manager will follow these steps:

1. Implement the routines and operators described in Chapter 3 in a single, independent module
to be located in the framework directory.

2. Add the necessary code throughout the framework so that a ‘master’ clock for a simulation
will be initialized based on namelist parameters for the starting time, ending time, and time
step.

3. Add code so that the master clock is updated during the course of model simulation by the
mpas_run() routines of individual MPAS cores.

4. Write and read date/time information from the clock to input, output, and restart files in
the same way as the current xtime variable.

19



Chapter 5

Testing and Validation

5.1 Testing and Validation: XXX

Date last modified: 2011/01/05
Contributors: (add your name to this list if it does not appear)

TBD

20



	Summary
	Requirements
	General date/time tracking
	Set the starting and ending date/time
	Determine whether the starting or ending time has been reached
	Set the default time increment
	Advance the date/time by an arbitrary time increment
	Handle both forward and backward time increments
	Perform time computation with no round-off using exact arithmetic

	Notifications
	Add notifications
	One-time notification
	Recurring notification
	Query for notifications
	Clear a notification
	Remove a notification

	Time instants and time intervals
	Time arithmetic

	Calendars and units
	Calendars
	Units
	Unit conversion


	Design
	General date/time tracking
	MPAS_createClock
	MPAS_destroyClock
	MPAS_isClockStartTime
	MPAS_isClockEndTime
	MPAS_setClockDirection
	MPAS_getClockDirection
	MPAS_setClockTimeStep
	MPAS_getClockTimeStep
	MPAS_advanceClock
	MPAS_setClockTime
	MPAS_getClockTime

	Notifications
	MPAS_addClockAlarm
	MPAS_isAlarmRinging
	MPAS_removeClockAlarm
	MPAS_resetClockAlarm
	MPAS_getClockRingingAlarms

	Time instants and time intervals
	MPAS_setTime
	MPAS_getTime
	MPAS_setTimeInterval
	MPAS_getTimeInterval

	Calendars and units

	Proposed Plan for Implementation
	Testing and Validation
	Testing and Validation: XXX


