<p><b>laura@ucar.edu</b> 2011-04-08 16:33:14 -0600 (Fri, 08 Apr 2011)</p><p>added sourcecode for wsm6 cloud microphysics scheme<br>
</p><hr noshade><pre><font color="gray">Added: branches/atmos_physics/src/core_physics/physics_wrf/libmassv.F
===================================================================
--- branches/atmos_physics/src/core_physics/physics_wrf/libmassv.F                                (rev 0)
+++ branches/atmos_physics/src/core_physics/physics_wrf/libmassv.F        2011-04-08 22:33:14 UTC (rev 789)
@@ -0,0 +1,390 @@
+! IBM libmassv compatibility library
+! 
+
+#ifndef NATIVE_MASSV
+      subroutine vdiv(z,x,y,n)
+      real*8 x(*),y(*),z(*)
+      do 10 j=1,n
+      z(j)=x(j)/y(j)
+   10 continue
+      return
+      end
+
+      subroutine vsdiv(z,x,y,n)
+      real*4 x(*),y(*),z(*)
+      do 10 j=1,n
+      z(j)=x(j)/y(j)
+   10 continue
+      return
+      end
+
+      subroutine vexp(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=exp(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vsexp(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=exp(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vlog(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=log(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vslog(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=log(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vrec(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=1.d0/x(j)
+   10 continue
+      return
+      end
+
+      subroutine vsrec(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=1.e0/x(j)
+   10 continue
+      return
+      end
+
+      subroutine vrsqrt(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=1.d0/sqrt(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vsrsqrt(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=1.e0/sqrt(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vsincos(x,y,z,n)
+      real*8 x(*),y(*),z(*)
+      do 10 j=1,n
+      x(j)=sin(z(j))
+      y(j)=cos(z(j))
+   10 continue
+      return
+      end
+
+      subroutine vssincos(x,y,z,n)
+      real*4 x(*),y(*),z(*)
+      do 10 j=1,n
+      x(j)=sin(z(j))
+      y(j)=cos(z(j))
+   10 continue
+      return
+      end
+
+      subroutine vsqrt(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=sqrt(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vssqrt(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=sqrt(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vtan(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=tan(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vstan(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=tan(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vatan2(z,y,x,n)
+      real*8 x(*),y(*),z(*)
+      do 10 j=1,n
+      z(j)=atan2(y(j),x(j))
+   10 continue
+      return
+      end
+
+      subroutine vsatan2(z,y,x,n)
+      real*4 x(*),y(*),z(*)
+      do 10 j=1,n
+      z(j)=atan2(y(j),x(j))
+   10 continue
+      return
+      end
+
+      subroutine vasin(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=asin(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vsin(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=sin(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vssin(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=sin(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vacos(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=acos(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vcos(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=cos(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vscos(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=cos(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vcosisin(y,x,n)
+      complex*16 y(*)
+      real*8 x(*)
+      do 10 j=1,n
+      y(j)=dcmplx(cos(x(j)),sin(x(j)))
+   10 continue
+      return
+      end
+
+      subroutine vscosisin(y,x,n)
+      complex*8 y(*)
+      real*4 x(*)
+      do 10 j=1,n
+      y(j)= cmplx(cos(x(j)),sin(x(j)))
+   10 continue
+      return
+      end
+
+      subroutine vdint(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+!     y(j)=dint(x(j))
+      y(j)=int(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vdnint(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+!     y(j)=dnint(x(j))
+      y(j)=nint(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vlog10(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=log10(x(j))
+   10 continue
+      return
+      end
+
+!      subroutine vlog1p(y,x,n)
+!      real*8 x(*),y(*)
+!      interface
+!        real*8 function log1p(%val(x))
+!          real*8 x
+!        end function log1p
+!      end interface
+!      do 10 j=1,n
+!      y(j)=log1p(x(j))
+!   10 continue
+!      return
+!      end
+
+      subroutine vcosh(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=cosh(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vsinh(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=sinh(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vtanh(y,x,n)
+      real*8 x(*),y(*)
+      do 10 j=1,n
+      y(j)=tanh(x(j))
+   10 continue
+      return
+      end
+
+!      subroutine vexpm1(y,x,n)
+!      real*8 x(*),y(*)
+!      interface
+!        real*8 function expm1(%val(x))
+!          real*8 x
+!        end function expm1
+!      end interface 
+!      do 10 j=1,n
+!      y(j)=expm1(x(j))
+!   10 continue
+!      return
+!      end
+
+
+      subroutine vsasin(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=asin(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vsacos(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+#if defined (G95)
+! no reason why g95 should fail - oh well, we don't use this routine anyways
+      y(j)=asin( sqrt(1-x(j)*x(j)) )
+#else
+      y(j)=acos(x(j))
+#endif
+   10 continue
+      return
+      end
+
+      subroutine vscosh(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=cosh(x(j))
+   10 continue
+      return
+      end
+
+!      subroutine vsexpm1(y,x,n)
+!      real*4 x(*),y(*)
+!      interface
+!        real*8 function expm1(%val(x))
+!          real*8 x
+!        end function expm1
+!      end interface
+!      do 10 j=1,n
+!      y(j)=expm1(real(x(j),8))
+!   10 continue
+!      return
+!      end
+
+      subroutine vslog10(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=log10(x(j))
+   10 continue
+      return
+      end
+
+!      subroutine vslog1p(y,x,n)
+!      real*4 x(*),y(*)
+!      interface
+!        real*8 function log1p(%val(x))
+!          real*8 x
+!        end function log1p
+!      end interface
+!      do 10 j=1,n
+!      y(j)=log1p(real(x(j),8))
+!   10 continue
+!      return
+!      end
+
+
+      subroutine vssinh(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=sinh(x(j))
+   10 continue
+      return
+      end
+
+      subroutine vstanh(y,x,n)
+      real*4 x(*),y(*)
+      do 10 j=1,n
+      y(j)=tanh(x(j))
+   10 continue
+      return
+      end
+#endif
+
+      subroutine vspow(z,y,x,n)
+      real*4 x(*),y(*),z(*)
+      do 10 j=1,n
+      z(j)=y(j)**x(j)
+   10 continue
+      return
+      end
+
+      subroutine vpow(z,y,x,n)
+      real*8 x(*),y(*),z(*)
+      do 10 j=1,n
+      z(j)=y(j)**x(j)
+   10 continue
+      return
+      end
+

Added: branches/atmos_physics/src/core_physics/physics_wrf/module_mp_wsm6.F
===================================================================
--- branches/atmos_physics/src/core_physics/physics_wrf/module_mp_wsm6.F                                (rev 0)
+++ branches/atmos_physics/src/core_physics/physics_wrf/module_mp_wsm6.F        2011-04-08 22:33:14 UTC (rev 789)
@@ -0,0 +1,2218 @@
+#if ( RWORDSIZE == 4 )
+#  define VREC vsrec
+#  define VSQRT vssqrt
+#else
+#  define VREC vrec
+#  define VSQRT vsqrt
+#endif
+
+MODULE module_mp_wsm6
+!
+!
+   REAL, PARAMETER, PRIVATE :: dtcldcr     = 120. ! maximum time step for minor loops
+   REAL, PARAMETER, PRIVATE :: n0r = 8.e6         ! intercept parameter rain
+   REAL, PARAMETER, PRIVATE :: n0g = 4.e6         ! intercept parameter graupel
+   REAL, PARAMETER, PRIVATE :: avtr = 841.9       ! a constant for terminal velocity of rain
+   REAL, PARAMETER, PRIVATE :: bvtr = 0.8         ! a constant for terminal velocity of rain
+   REAL, PARAMETER, PRIVATE :: r0 = .8e-5         ! 8 microm  in contrast to 10 micro m
+   REAL, PARAMETER, PRIVATE :: peaut = .55        ! collection efficiency
+   REAL, PARAMETER, PRIVATE :: xncr = 3.e8        ! maritime cloud in contrast to 3.e8 in tc80
+   REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5    ! the dynamic viscosity kgm-1s-1
+   REAL, PARAMETER, PRIVATE :: avts = 11.72       ! a constant for terminal velocity of snow
+   REAL, PARAMETER, PRIVATE :: bvts = .41         ! a constant for terminal velocity of snow
+   REAL, PARAMETER, PRIVATE :: avtg = 330.        ! a constant for terminal velocity of graupel
+   REAL, PARAMETER, PRIVATE :: bvtg = 0.8         ! a constant for terminal velocity of graupel
+   REAL, PARAMETER, PRIVATE :: deng = 500.        ! density of graupel
+   REAL, PARAMETER, PRIVATE :: n0smax =  1.e11    ! maximum n0s (t=-90C unlimited)
+   REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4   ! limited maximum value for slope parameter of rain
+   REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5   ! limited maximum value for slope parameter of snow
+   REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4   ! limited maximum value for slope parameter of graupel
+   REAL, PARAMETER, PRIVATE :: dicon = 11.9       ! constant for the cloud-ice diamter
+   REAL, PARAMETER, PRIVATE :: dimax = 500.e-6    ! limited maximum value for the cloud-ice diamter
+   REAL, PARAMETER, PRIVATE :: n0s = 2.e6         ! temperature dependent intercept parameter snow
+   REAL, PARAMETER, PRIVATE :: alpha = .12        ! .122 exponen factor for n0s
+   REAL, PARAMETER, PRIVATE :: pfrz1 = 100.       ! constant in Biggs freezing
+   REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66       ! constant in Biggs freezing
+   REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9     ! minimun values for qr, qs, and qg
+   REAL, PARAMETER, PRIVATE :: eacrc = 1.0        ! Snow/cloud-water collection efficiency
+   REAL, PARAMETER, PRIVATE :: dens  =  100.0     ! Density of snow
+   REAL, PARAMETER, PRIVATE :: qs0   =  6.e-4     ! threshold amount for aggretion to occur
+   REAL, SAVE ::                                      &amp;
+             qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr, &amp;
+             g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr,    &amp;
+             bvtr6,g6pbr,                             &amp;
+             precr1,precr2,roqimax,bvts1,             &amp;
+             bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs,     &amp;
+             g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, &amp;
+             pidn0s,xlv1,pacrc,pi,                    &amp;
+             bvtg1,bvtg2,bvtg3,bvtg4,g1pbg,           &amp;
+             g3pbg,g4pbg,g5pbgo2,pvtg,pacrg,          &amp;
+             precg1,precg2,pidn0g,                    &amp;
+             rslopermax,rslopesmax,rslopegmax,        &amp;
+             rsloperbmax,rslopesbmax,rslopegbmax,     &amp;
+             rsloper2max,rslopes2max,rslopeg2max,     &amp;
+             rsloper3max,rslopes3max,rslopeg3max
+CONTAINS
+!===================================================================
+!
+  SUBROUTINE wsm6(th, q, qc, qr, qi, qs, qg                        &amp;
+                 ,den, pii, p, delz                                &amp;
+                 ,delt,g, cpd, cpv, rd, rv, t0c                    &amp;
+                 ,ep1, ep2, qmin                                   &amp;
+                 ,XLS, XLV0, XLF0, den0, denr                      &amp;
+                 ,cliq,cice,psat                                   &amp;
+                 ,rain, rainncv                                    &amp;
+                 ,snow, snowncv                                    &amp;
+                 ,sr                                               &amp;
+                 ,graupel, graupelncv                              &amp;
+                 ,ids,ide, jds,jde, kds,kde                        &amp;
+                 ,ims,ime, jms,jme, kms,kme                        &amp;
+                 ,its,ite, jts,jte, kts,kte                        &amp;
+                                                                   )
+!-------------------------------------------------------------------
+  IMPLICIT NONE
+!-------------------------------------------------------------------
+  INTEGER,      INTENT(IN   )    ::   ids,ide, jds,jde, kds,kde , &amp;
+                                      ims,ime, jms,jme, kms,kme , &amp;
+                                      its,ite, jts,jte, kts,kte
+  REAL, DIMENSION( ims:ime , kms:kme , jms:jme ),                 &amp;
+        INTENT(INOUT) ::                                          &amp;
+                                                             th,  &amp;
+                                                              q,  &amp;
+                                                              qc, &amp;
+                                                              qi, &amp;
+                                                              qr, &amp;
+                                                              qs, &amp;
+                                                              qg
+  REAL, DIMENSION( ims:ime , kms:kme , jms:jme ),                 &amp;
+        INTENT(IN   ) ::                                          &amp;
+                                                             den, &amp;
+                                                             pii, &amp;
+                                                               p, &amp;
+                                                            delz
+  REAL, INTENT(IN   ) ::                                    delt, &amp;
+                                                               g, &amp;
+                                                              rd, &amp;
+                                                              rv, &amp;
+                                                             t0c, &amp;
+                                                            den0, &amp;
+                                                             cpd, &amp;
+                                                             cpv, &amp;
+                                                             ep1, &amp;
+                                                             ep2, &amp;
+                                                            qmin, &amp;
+                                                             XLS, &amp;
+                                                            XLV0, &amp;
+                                                            XLF0, &amp;
+                                                            cliq, &amp;
+                                                            cice, &amp;
+                                                            psat, &amp;
+                                                            denr
+  REAL, DIMENSION( ims:ime , jms:jme ),                           &amp;
+        INTENT(INOUT) ::                                    rain, &amp;
+                                                         rainncv, &amp;
+                                                              sr
+  REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL,                 &amp;
+        INTENT(INOUT) ::                                    snow, &amp;
+                                                         snowncv
+  REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL,                 &amp;
+        INTENT(INOUT) ::                                 graupel, &amp;
+                                                      graupelncv
+! LOCAL VAR
+  REAL, DIMENSION( its:ite , kts:kte ) ::   t
+  REAL, DIMENSION( its:ite , kts:kte, 2 ) ::   qci
+  REAL, DIMENSION( its:ite , kts:kte, 3 ) ::   qrs
+  INTEGER ::               i,j,k
+!-------------------------------------------------------------------
+      DO j=jts,jte
+         DO k=kts,kte
+         DO i=its,ite
+            t(i,k)=th(i,k,j)*pii(i,k,j)
+            qci(i,k,1) = qc(i,k,j)
+            qci(i,k,2) = qi(i,k,j)
+            qrs(i,k,1) = qr(i,k,j)
+            qrs(i,k,2) = qs(i,k,j)
+            qrs(i,k,3) = qg(i,k,j)
+         ENDDO
+         ENDDO
+         !  Sending array starting locations of optional variables may cause
+         !  troubles, so we explicitly change the call.
+         CALL wsm62D(t, q(ims,kms,j), qci, qrs                     &amp;
+                    ,den(ims,kms,j)                                &amp;
+                    ,p(ims,kms,j), delz(ims,kms,j)                 &amp;
+                    ,delt,g, cpd, cpv, rd, rv, t0c                 &amp;
+                    ,ep1, ep2, qmin                                &amp;
+                    ,XLS, XLV0, XLF0, den0, denr                   &amp;
+                    ,cliq,cice,psat                                &amp;
+                    ,j                                             &amp;
+                    ,rain(ims,j),rainncv(ims,j)                    &amp;
+                    ,sr(ims,j)                                     &amp;
+                    ,ids,ide, jds,jde, kds,kde                     &amp;
+                    ,ims,ime, jms,jme, kms,kme                     &amp;
+                    ,its,ite, jts,jte, kts,kte                     &amp;
+                    ,snow,snowncv                                  &amp;
+                    ,graupel,graupelncv                            &amp;
+                                                                   )
+         DO K=kts,kte
+         DO I=its,ite
+            th(i,k,j)=t(i,k)/pii(i,k,j)
+            qc(i,k,j) = qci(i,k,1)
+            qi(i,k,j) = qci(i,k,2)
+            qr(i,k,j) = qrs(i,k,1)
+            qs(i,k,j) = qrs(i,k,2)
+            qg(i,k,j) = qrs(i,k,3)
+         ENDDO
+         ENDDO
+      ENDDO
+  END SUBROUTINE wsm6
+!===================================================================
+!
+  SUBROUTINE wsm62D(t, q                                          &amp;   
+                   ,qci, qrs, den, p, delz                        &amp;
+                   ,delt,g, cpd, cpv, rd, rv, t0c                 &amp;
+                   ,ep1, ep2, qmin                                &amp;
+                   ,XLS, XLV0, XLF0, den0, denr                   &amp;
+                   ,cliq,cice,psat                                &amp;
+                   ,lat                                           &amp;
+                   ,rain,rainncv                                  &amp;
+                   ,sr                                            &amp;
+                   ,ids,ide, jds,jde, kds,kde                     &amp;
+                   ,ims,ime, jms,jme, kms,kme                     &amp;
+                   ,its,ite, jts,jte, kts,kte                     &amp;
+                   ,snow,snowncv                                  &amp;
+                   ,graupel,graupelncv                            &amp;
+                                                                  )
+!-------------------------------------------------------------------
+  IMPLICIT NONE
+!-------------------------------------------------------------------
+!
+!  This code is a 6-class GRAUPEL phase microphyiscs scheme (WSM6) of the 
+!  Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei
+!  number concentration is a function of temperature, and seperate assumption
+!  is developed, in which ice crystal number concentration is a function
+!  of ice amount. A theoretical background of the ice-microphysics and related
+!  processes in the WSMMPs are described in Hong et al. (2004).
+!  All production terms in the WSM6 scheme are described in Hong and Lim (2006).
+!  All units are in m.k.s. and source/sink terms in kgkg-1s-1.
+!
+!  WSM6 cloud scheme
+!
+!  Coded by Song-You Hong and Jeong-Ock Jade Lim (Yonsei Univ.)
+!           Summer 2003
+!
+!  Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR)
+!           Summer 2004
+!
+!  History :  semi-lagrangian scheme sedimentation(JH), and clean up
+!             Hong, August 2009
+!
+!  Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev.
+!             Hong and Lim (HL, 2006) J. Korean Meteor. Soc.
+!             Dudhia, Hong and Lim (DHL, 2008) J. Meteor. Soc. Japan
+!             Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor.
+!             Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci.
+!             Rutledge, Hobbs (RH84, 1984) J. Atmos. Sci.
+!             Juang and Hong (JH, 2010) Mon. Wea. Rev.
+!
+  INTEGER,      INTENT(IN   )    ::   ids,ide, jds,jde, kds,kde , &amp;
+                                      ims,ime, jms,jme, kms,kme , &amp;
+                                      its,ite, jts,jte, kts,kte,  &amp;
+                                      lat
+  REAL, DIMENSION( its:ite , kts:kte ),                           &amp;
+        INTENT(INOUT) ::                                          &amp;
+                                                               t
+  REAL, DIMENSION( its:ite , kts:kte, 2 ),                        &amp;
+        INTENT(INOUT) ::                                          &amp;
+                                                             qci
+  REAL, DIMENSION( its:ite , kts:kte, 3 ),                        &amp;
+        INTENT(INOUT) ::                                          &amp;
+                                                             qrs
+  REAL, DIMENSION( ims:ime , kms:kme ),                           &amp;
+        INTENT(INOUT) ::                                          &amp;
+                                                               q
+  REAL, DIMENSION( ims:ime , kms:kme ),                           &amp;
+        INTENT(IN   ) ::                                          &amp;
+                                                             den, &amp;
+                                                               p, &amp;
+                                                            delz
+  REAL, INTENT(IN   ) ::                                    delt, &amp;
+                                                               g, &amp;
+                                                             cpd, &amp;
+                                                             cpv, &amp;
+                                                             t0c, &amp;
+                                                            den0, &amp;
+                                                              rd, &amp;
+                                                              rv, &amp;
+                                                             ep1, &amp;
+                                                             ep2, &amp;
+                                                            qmin, &amp;
+                                                             XLS, &amp;
+                                                            XLV0, &amp;
+                                                            XLF0, &amp;
+                                                            cliq, &amp;
+                                                            cice, &amp;
+                                                            psat, &amp;
+                                                            denr
+  REAL, DIMENSION( ims:ime ),                                     &amp;
+        INTENT(INOUT) ::                                    rain, &amp;
+                                                         rainncv, &amp;
+                                                              sr
+  REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL,                  &amp;
+        INTENT(INOUT) ::                                    snow, &amp;
+                                                         snowncv
+  REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL,                  &amp;
+        INTENT(INOUT) ::                                 graupel, &amp;
+                                                      graupelncv
+! LOCAL VAR
+  REAL, DIMENSION( its:ite , kts:kte , 3) ::                      &amp;
+                                                              rh, &amp;
+                                                              qs, &amp;
+                                                          rslope, &amp;
+                                                         rslope2, &amp;
+                                                         rslope3, &amp;
+                                                         rslopeb, &amp;
+                                                         qrs_tmp, &amp; 
+                                                            falk, &amp;
+                                                            fall, &amp;
+                                                           work1
+  REAL, DIMENSION( its:ite , kts:kte ) ::                         &amp;
+                                                           fallc, &amp;
+                                                           falkc, &amp;
+                                                          work1c, &amp;
+                                                          work2c, &amp;
+                                                           workr, &amp;
+                                                           worka
+  REAL, DIMENSION( its:ite , kts:kte ) ::                         &amp;
+                                                         den_tmp, &amp;
+                                                        delz_tmp
+  REAL, DIMENSION( its:ite , kts:kte ) ::                         &amp;
+                                                           pigen, &amp;
+                                                           pidep, &amp;
+                                                           pcond, &amp;
+                                                           prevp, &amp;
+                                                           psevp, &amp;
+                                                           pgevp, &amp;
+                                                           psdep, &amp;
+                                                           pgdep, &amp;
+                                                           praut, &amp;
+                                                           psaut, &amp;
+                                                           pgaut, &amp;
+                                                           piacr, &amp;
+                                                           pracw, &amp;
+                                                           praci, &amp;
+                                                           pracs, &amp;
+                                                           psacw, &amp;
+                                                           psaci, &amp;
+                                                           psacr, &amp;
+                                                           pgacw, &amp;
+                                                           pgaci, &amp;
+                                                           pgacr, &amp;
+                                                           pgacs, &amp;
+                                                           paacw, &amp;
+                                                           psmlt, &amp;
+                                                           pgmlt, &amp;
+                                                           pseml, &amp;
+                                                           pgeml
+  REAL, DIMENSION( its:ite , kts:kte ) ::                         &amp;
+                                                            qsum, &amp;
+                                                              xl, &amp;
+                                                             cpm, &amp;
+                                                           work2, &amp;
+                                                          denfac, &amp;
+                                                             xni, &amp;
+                                                         denqrs1, &amp;
+                                                         denqrs2, &amp;
+                                                         denqrs3, &amp;
+                                                          denqci, &amp; 
+                                                          n0sfac
+  REAL, DIMENSION( its:ite ) ::                          delqrs1, &amp;
+                                                         delqrs2, &amp;
+                                                         delqrs3, &amp;
+                                                           delqi  
+  REAL, DIMENSION( its:ite ) ::                        tstepsnow, &amp;
+                                                      tstepgraup
+  INTEGER, DIMENSION( its:ite ) ::                         mstep, &amp;
+                                                           numdt
+  LOGICAL, DIMENSION( its:ite ) ::                        flgcld
+  REAL  ::                                                        &amp;
+            cpmcal, xlcal, diffus,                                &amp;
+            viscos, xka, venfac, conden, diffac,                  &amp;
+            x, y, z, a, b, c, d, e,                               &amp;
+            qdt, holdrr, holdrs, holdrg, supcol, supcolt, pvt,    &amp;
+            coeres, supsat, dtcld, xmi, eacrs, satdt,             &amp;
+            qimax, diameter, xni0, roqi0,                         &amp;
+            fallsum, fallsum_qsi, fallsum_qg,                     &amp;
+            vt2i,vt2r,vt2s,vt2g,acrfac,egs,egi,                   &amp;
+            xlwork2, factor, source, value,                       &amp;
+            xlf, pfrzdtc, pfrzdtr, supice, alpha2, delta2, delta3  
+  REAL  :: vt2ave
+  REAL  :: holdc, holdci
+  INTEGER :: i, j, k, mstepmax,                                   &amp;
+            iprt, latd, lond, loop, loops, ifsat, n, idim, kdim
+! Temporaries used for inlining fpvs function
+  REAL  :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp
+! variables for optimization
+  REAL, DIMENSION( its:ite ) ::                             tvec1
+  REAL                       ::                              temp
+!
+!=================================================================
+!   compute internal functions
+!
+      cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv
+      xlcal(x) = xlv0-xlv1*(x-t0c)
+!----------------------------------------------------------------
+!     diffus: diffusion coefficient of the water vapor
+!     viscos: kinematic viscosity(m2s-1)
+!     Optimizatin : A**B =&gt; exp(log(A)*(B))
+!
+      diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y        ! 8.794e-5*x**1.81/y
+      viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y  ! 1.496e-6*x**1.5/(x+120.)/y
+      xka(x,y) = 1.414e3*viscos(x,y)*y
+      diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b))
+      venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333)))         &amp;
+                     /sqrt(viscos(b,c))*sqrt(sqrt(den0/c))
+      conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a))
+!
+!
+      idim = ite-its+1
+      kdim = kte-kts+1
+!
+!----------------------------------------------------------------
+!     paddint 0 for negative values generated by dynamics
+!
+      do k = kts, kte
+        do i = its, ite
+          qci(i,k,1) = max(qci(i,k,1),0.0)
+          qrs(i,k,1) = max(qrs(i,k,1),0.0)
+          qci(i,k,2) = max(qci(i,k,2),0.0)
+          qrs(i,k,2) = max(qrs(i,k,2),0.0)
+          qrs(i,k,3) = max(qrs(i,k,3),0.0)
+        enddo
+      enddo
+!
+!----------------------------------------------------------------
+!     latent heat for phase changes and heat capacity. neglect the
+!     changes during microphysical process calculation
+!     emanuel(1994)
+!
+      do k = kts, kte
+        do i = its, ite
+          cpm(i,k) = cpmcal(q(i,k))
+          xl(i,k) = xlcal(t(i,k))
+        enddo
+      enddo
+      do k = kts, kte
+        do i = its, ite
+          delz_tmp(i,k) = delz(i,k)
+          den_tmp(i,k) = den(i,k)
+        enddo
+      enddo
+!
+!----------------------------------------------------------------
+!    initialize the surface rain, snow, graupel
+!
+      do i = its, ite
+        rainncv(i) = 0.
+        if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i,lat) = 0.
+        if(PRESENT (graupelncv) .AND. PRESENT (graupel)) graupelncv(i,lat) = 0.
+        sr(i) = 0.
+! new local array to catch step snow and graupel
+        tstepsnow(i) = 0.
+        tstepgraup(i) = 0.
+      enddo
+!
+!----------------------------------------------------------------
+!     compute the minor time steps.
+!
+      loops = max(nint(delt/dtcldcr),1)
+      dtcld = delt/loops
+      if(delt.le.dtcldcr) dtcld = delt
+!
+      do loop = 1,loops
+!
+!----------------------------------------------------------------
+!     initialize the large scale variables
+!
+      do i = its, ite
+        mstep(i) = 1
+        flgcld(i) = .true.
+      enddo
+!
+!     do k = kts, kte
+!       do i = its, ite
+!         denfac(i,k) = sqrt(den0/den(i,k))
+!       enddo
+!     enddo
+      do k = kts, kte
+        CALL VREC( tvec1(its), den(its,k), ite-its+1)
+        do i = its, ite
+          tvec1(i) = tvec1(i)*den0
+        enddo
+        CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1)
+      enddo
+!
+! Inline expansion for fpvs
+!         qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c)
+!         qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c)
+      hsub = xls
+      hvap = xlv0
+      cvap = cpv
+      ttp=t0c+0.01
+      dldt=cvap-cliq
+      xa=-dldt/rv
+      xb=xa+hvap/(rv*ttp)
+      dldti=cvap-cice
+      xai=-dldti/rv
+      xbi=xai+hsub/(rv*ttp)
+      do k = kts, kte
+        do i = its, ite
+          tr=ttp/t(i,k)
+          qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr))
+          qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k))
+          qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1))
+          qs(i,k,1) = max(qs(i,k,1),qmin)
+          rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin)
+          tr=ttp/t(i,k)
+          if(t(i,k).lt.ttp) then
+            qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr))
+          else
+            qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr))
+          endif
+          qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k))
+          qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2))
+          qs(i,k,2) = max(qs(i,k,2),qmin)
+          rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin)
+        enddo
+      enddo
+!
+!----------------------------------------------------------------
+!     initialize the variables for microphysical physics
+!
+!
+      do k = kts, kte
+        do i = its, ite
+          prevp(i,k) = 0.
+          psdep(i,k) = 0.
+          pgdep(i,k) = 0.
+          praut(i,k) = 0.
+          psaut(i,k) = 0.
+          pgaut(i,k) = 0.
+          pracw(i,k) = 0.
+          praci(i,k) = 0.
+          piacr(i,k) = 0.
+          psaci(i,k) = 0.
+          psacw(i,k) = 0.
+          pracs(i,k) = 0.
+          psacr(i,k) = 0.
+          pgacw(i,k) = 0.
+          paacw(i,k) = 0.
+          pgaci(i,k) = 0.
+          pgacr(i,k) = 0.
+          pgacs(i,k) = 0.
+          pigen(i,k) = 0.
+          pidep(i,k) = 0.
+          pcond(i,k) = 0.
+          psmlt(i,k) = 0.
+          pgmlt(i,k) = 0.
+          pseml(i,k) = 0.
+          pgeml(i,k) = 0.
+          psevp(i,k) = 0.
+          pgevp(i,k) = 0.
+          falk(i,k,1) = 0.
+          falk(i,k,2) = 0.
+          falk(i,k,3) = 0.
+          fall(i,k,1) = 0.
+          fall(i,k,2) = 0.
+          fall(i,k,3) = 0.
+          fallc(i,k) = 0.
+          falkc(i,k) = 0.
+          xni(i,k) = 1.e3
+        enddo
+      enddo
+!-------------------------------------------------------------
+! Ni: ice crystal number concentraiton   [HDC 5c]
+!-------------------------------------------------------------
+      do k = kts, kte
+        do i = its, ite
+          temp = (den(i,k)*max(qci(i,k,2),qmin))
+          temp = sqrt(sqrt(temp*temp*temp))
+          xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6)
+        enddo
+      enddo
+!
+!----------------------------------------------------------------
+!     compute the fallout term:
+!     first, vertical terminal velosity for minor loops
+!----------------------------------------------------------------
+      do k = kts, kte
+        do i = its, ite
+          qrs_tmp(i,k,1) = qrs(i,k,1)
+          qrs_tmp(i,k,2) = qrs(i,k,2)
+          qrs_tmp(i,k,3) = qrs(i,k,3)
+        enddo
+      enddo
+      call slope_wsm6(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, &amp; 
+                     work1,its,ite,kts,kte)
+!
+      do k = kte, kts, -1
+        do i = its, ite
+          workr(i,k) = work1(i,k,1)
+          qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15)
+          IF ( qsum(i,k) .gt. 1.e-15 ) THEN
+            worka(i,k) = (work1(i,k,2)*qrs(i,k,2) + work1(i,k,3)*qrs(i,k,3)) &amp;
+                      /qsum(i,k)
+          ELSE
+            worka(i,k) = 0.
+          ENDIF
+          denqrs1(i,k) = den(i,k)*qrs(i,k,1)
+          denqrs2(i,k) = den(i,k)*qrs(i,k,2)
+          denqrs3(i,k) = den(i,k)*qrs(i,k,3)
+          if(qrs(i,k,1).le.0.0) workr(i,k) = 0.0
+        enddo
+      enddo
+      call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,workr,denqrs1,  &amp;
+                           delqrs1,dtcld,1,1)
+      call nislfv_rain_plm6(idim,kdim,den_tmp,denfac,t,delz_tmp,worka,         &amp; 
+                           denqrs2,denqrs3,delqrs2,delqrs3,dtcld,1,1)
+      do k = kts, kte
+        do i = its, ite
+          qrs(i,k,1) = max(denqrs1(i,k)/den(i,k),0.)
+          qrs(i,k,2) = max(denqrs2(i,k)/den(i,k),0.)
+          qrs(i,k,3) = max(denqrs3(i,k)/den(i,k),0.)
+          fall(i,k,1) = denqrs1(i,k)*workr(i,k)/delz(i,k)
+          fall(i,k,2) = denqrs2(i,k)*worka(i,k)/delz(i,k)
+          fall(i,k,3) = denqrs3(i,k)*worka(i,k)/delz(i,k)
+        enddo
+      enddo
+      do i = its, ite
+        fall(i,1,1) = delqrs1(i)/delz(i,1)/dtcld
+        fall(i,1,2) = delqrs2(i)/delz(i,1)/dtcld
+        fall(i,1,3) = delqrs3(i)/delz(i,1)/dtcld
+      enddo
+      do k = kts, kte
+        do i = its, ite
+          qrs_tmp(i,k,1) = qrs(i,k,1)
+          qrs_tmp(i,k,2) = qrs(i,k,2)
+          qrs_tmp(i,k,3) = qrs(i,k,3)
+        enddo
+      enddo
+      call slope_wsm6(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, &amp;
+                     work1,its,ite,kts,kte)
+!
+      do k = kte, kts, -1 
+        do i = its, ite
+          supcol = t0c-t(i,k)
+          n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)
+          if(t(i,k).gt.t0c) then
+!---------------------------------------------------------------
+! psmlt: melting of snow [HL A33] [RH83 A25]
+!       (T&gt;T0: S-&gt;R)
+!---------------------------------------------------------------
+            xlf = xlf0
+            work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
+            if(qrs(i,k,2).gt.0.) then
+              coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2))
+              psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2.       &amp;
+                         *n0sfac(i,k)*(precs1*rslope2(i,k,2)                 &amp;
+                         +precs2*work2(i,k)*coeres)
+              psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i),                &amp;
+                          -qrs(i,k,2)/mstep(i)),0.)
+              qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k)
+              qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k)
+              t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k)
+            endif
+!---------------------------------------------------------------
+! pgmlt: melting of graupel [HL A23]  [LFO 47]
+!       (T&gt;T0: G-&gt;R)
+!---------------------------------------------------------------
+            if(qrs(i,k,3).gt.0.) then
+              coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3))
+              pgmlt(i,k) = xka(t(i,k),den(i,k))/xlf                          &amp;
+                         *(t0c-t(i,k))*(precg1*rslope2(i,k,3)                &amp;
+                         +precg2*work2(i,k)*coeres)
+              pgmlt(i,k) = min(max(pgmlt(i,k)*dtcld/mstep(i),                &amp;
+                          -qrs(i,k,3)/mstep(i)),0.)                          
+              qrs(i,k,3) = qrs(i,k,3) + pgmlt(i,k)
+              qrs(i,k,1) = qrs(i,k,1) - pgmlt(i,k)
+              t(i,k) = t(i,k) + xlf/cpm(i,k)*pgmlt(i,k)
+            endif
+          endif
+        enddo
+      enddo
+!---------------------------------------------------------------
+! Vice [ms-1] : fallout of ice crystal [HDC 5a]
+!---------------------------------------------------------------
+      do k = kte, kts, -1
+        do i = its, ite
+          if(qci(i,k,2).le.0.) then
+            work1c(i,k) = 0.
+          else
+            xmi = den(i,k)*qci(i,k,2)/xni(i,k)
+            diameter  = max(min(dicon * sqrt(xmi),dimax), 1.e-25)
+            work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31))
+          endif
+        enddo
+      enddo
+!
+!  forward semi-laglangian scheme (JH), PCM (piecewise constant),  (linear)
+!
+      do k = kte, kts, -1
+        do i = its, ite
+          denqci(i,k) = den(i,k)*qci(i,k,2)
+        enddo
+      enddo
+      call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci,  &amp;
+                           delqi,dtcld,1,0)
+      do k = kts, kte
+        do i = its, ite
+          qci(i,k,2) = max(denqci(i,k)/den(i,k),0.)
+        enddo
+      enddo
+      do i = its, ite
+        fallc(i,1) = delqi(i)/delz(i,1)/dtcld
+      enddo
+!
+!----------------------------------------------------------------
+!      rain (unit is mm/sec;kgm-2s-1: /1000*delt ===&gt; m)==&gt; mm for wrf
+!
+      do i = its, ite
+        fallsum = fall(i,kts,1)+fall(i,kts,2)+fall(i,kts,3)+fallc(i,kts)
+        fallsum_qsi = fall(i,kts,2)+fallc(i,kts)
+        fallsum_qg = fall(i,kts,3)
+        if(fallsum.gt.0.) then
+          rainncv(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rainncv(i)
+          rain(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rain(i)
+        endif
+        if(fallsum_qsi.gt.0.) then
+          tstepsnow(i)   = fallsum_qsi*delz(i,kts)/denr*dtcld*1000.            &amp;
+                           +tstepsnow(i)
+        IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN
+          snowncv(i,lat) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000.            &amp; 
+                           +snowncv(i,lat)
+          snow(i,lat) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i,lat)
+        ENDIF
+        endif
+        if(fallsum_qg.gt.0.) then
+          tstepgraup(i)  = fallsum_qsi*delz(i,kts)/denr*dtcld*1000.            &amp;
+                           +tstepgraup(i)
+        IF ( PRESENT (graupelncv) .AND. PRESENT (graupel)) THEN
+          graupelncv(i,lat) = fallsum_qg*delz(i,kts)/denr*dtcld*1000.          &amp;   
+                              + graupelncv(i,lat)
+          graupel(i,lat) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. + graupel(i,lat)
+        ENDIF
+        endif
+!       if(fallsum.gt.0.)sr(i)=(snowncv(i,lat) + graupelncv(i,lat))/(rainncv(i)+1.e-12)
+        if(fallsum.gt.0.)sr(i)=(tstepsnow(i) + tstepgraup(i))/(rainncv(i)+1.e-12)
+      enddo
+!
+!---------------------------------------------------------------
+! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28]
+!       (T&gt;T0: I-&gt;C)
+!---------------------------------------------------------------
+      do k = kts, kte
+        do i = its, ite
+          supcol = t0c-t(i,k)
+          xlf = xls-xl(i,k)
+          if(supcol.lt.0.) xlf = xlf0
+          if(supcol.lt.0.and.qci(i,k,2).gt.0.) then
+            qci(i,k,1) = qci(i,k,1) + qci(i,k,2)
+            t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2)
+            qci(i,k,2) = 0.
+          endif
+!---------------------------------------------------------------
+! pihmf: homogeneous freezing of cloud water below -40c [HL A45]
+!        (T&lt;-40C: C-&gt;I)
+!---------------------------------------------------------------
+          if(supcol.gt.40..and.qci(i,k,1).gt.0.) then
+            qci(i,k,2) = qci(i,k,2) + qci(i,k,1)
+            t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1)
+            qci(i,k,1) = 0.
+          endif
+!---------------------------------------------------------------
+! pihtf: heterogeneous freezing of cloud water [HL A44]
+!        (T0&gt;T&gt;-40C: C-&gt;I)
+!---------------------------------------------------------------
+          if(supcol.gt.0..and.qci(i,k,1).gt.qmin) then
+!           pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.)                         &amp;
+!              *den(i,k)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1))
+            supcolt=min(supcol,50.)
+            pfrzdtc = min(pfrz1*(exp(pfrz2*supcolt)-1.)                        &amp;
+            *den(i,k)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1))
+            qci(i,k,2) = qci(i,k,2) + pfrzdtc
+            t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc
+            qci(i,k,1) = qci(i,k,1)-pfrzdtc
+          endif
+!---------------------------------------------------------------
+! pgfrz: freezing of rain water [HL A20] [LFO 45]
+!        (T&lt;T0, R-&gt;G)
+!---------------------------------------------------------------
+          if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then
+!           pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k)                    &amp;
+!                 *(exp(pfrz2*supcol)-1.)*rslope3(i,k,1)**2                    &amp;
+!                 *rslope(i,k,1)*dtcld,qrs(i,k,1))
+            temp = rslope3(i,k,1)
+            temp = temp*temp*rslope(i,k,1)
+            supcolt=min(supcol,50.)
+            pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k)                  &amp;
+                  *(exp(pfrz2*supcolt)-1.)*temp*dtcld,                         &amp;
+                  qrs(i,k,1))
+            qrs(i,k,3) = qrs(i,k,3) + pfrzdtr
+            t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr
+            qrs(i,k,1) = qrs(i,k,1)-pfrzdtr
+          endif
+        enddo
+      enddo
+!
+!
+!----------------------------------------------------------------
+!     update the slope parameters for microphysics computation
+!
+      do k = kts, kte
+        do i = its, ite
+          qrs_tmp(i,k,1) = qrs(i,k,1)
+          qrs_tmp(i,k,2) = qrs(i,k,2)
+          qrs_tmp(i,k,3) = qrs(i,k,3)
+        enddo
+      enddo
+      call slope_wsm6(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, &amp;
+                     work1,its,ite,kts,kte)
+!------------------------------------------------------------------
+!     work1:  the thermodynamic term in the denominator associated with
+!             heat conduction and vapor diffusion
+!             (ry88, y93, h85)
+!     work2: parameter associated with the ventilation effects(y93)
+!
+      do k = kts, kte
+        do i = its, ite
+          work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1))
+          work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2))
+          work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
+        enddo
+      enddo
+!
+!===============================================================
+!
+! warm rain processes
+!
+! - follows the processes in RH83 and LFO except for autoconcersion
+!
+!===============================================================
+!
+      do k = kts, kte
+        do i = its, ite
+          supsat = max(q(i,k),qmin)-qs(i,k,1)
+          satdt = supsat/dtcld
+!---------------------------------------------------------------
+! praut: auto conversion rate from cloud to rain [HDC 16]
+!        (C-&gt;R)
+!---------------------------------------------------------------
+          if(qci(i,k,1).gt.qc0) then
+            praut(i,k) = qck1*qci(i,k,1)**(7./3.)
+            praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld)
+          endif
+!---------------------------------------------------------------
+! pracw: accretion of cloud water by rain [HL A40] [LFO 51]
+!        (C-&gt;R)
+!---------------------------------------------------------------
+          if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then
+            pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1)               &amp;
+                        *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld)
+          endif
+!---------------------------------------------------------------
+! prevp: evaporation/condensation rate of rain [HDC 14]
+!        (V-&gt;R or R-&gt;V)
+!---------------------------------------------------------------
+          if(qrs(i,k,1).gt.0.) then
+            coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1))
+            prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1)                 &amp;
+                         +precr2*work2(i,k)*coeres)/work1(i,k,1)
+            if(prevp(i,k).lt.0.) then
+              prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld)
+              prevp(i,k) = max(prevp(i,k),satdt/2)
+            else
+              prevp(i,k) = min(prevp(i,k),satdt/2)
+            endif
+          endif
+        enddo
+      enddo
+!
+!===============================================================
+!
+! cold rain processes
+!
+! - follows the revised ice microphysics processes in HDC
+! - the processes same as in RH83 and RH84  and LFO behave
+!   following ice crystal hapits defined in HDC, inclduing
+!   intercept parameter for snow (n0s), ice crystal number
+!   concentration (ni), ice nuclei number concentration
+!   (n0i), ice diameter (d)
+!
+!===============================================================
+!
+      do k = kts, kte
+        do i = its, ite
+          supcol = t0c-t(i,k)
+          n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)
+          supsat = max(q(i,k),qmin)-qs(i,k,2)
+          satdt = supsat/dtcld
+          ifsat = 0
+!-------------------------------------------------------------
+! Ni: ice crystal number concentraiton   [HDC 5c]
+!-------------------------------------------------------------
+!         xni(i,k) = min(max(5.38e7*(den(i,k)                                  &amp;
+!                      *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6)
+          temp = (den(i,k)*max(qci(i,k,2),qmin))
+          temp = sqrt(sqrt(temp*temp*temp))
+          xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6)
+          eacrs = exp(0.07*(-supcol))
+!
+          xmi = den(i,k)*qci(i,k,2)/xni(i,k)
+          diameter  = min(dicon * sqrt(xmi),dimax)
+          vt2i = 1.49e4*diameter**1.31
+          vt2r=pvtr*rslopeb(i,k,1)*denfac(i,k)
+          vt2s=pvts*rslopeb(i,k,2)*denfac(i,k)
+          vt2g=pvtg*rslopeb(i,k,3)*denfac(i,k)
+          qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15)
+          if(qsum(i,k) .gt. 1.e-15) then
+          vt2ave=(vt2s*qrs(i,k,2)+vt2g*qrs(i,k,3))/(qsum(i,k))
+          else
+          vt2ave=0.
+          endif
+          if(supcol.gt.0.and.qci(i,k,2).gt.qmin) then
+            if(qrs(i,k,1).gt.qcrmin) then
+!-------------------------------------------------------------
+! praci: Accretion of cloud ice by rain [HL A15] [LFO 25]
+!        (T&lt;T0: I-&gt;R)
+!-------------------------------------------------------------
+              acrfac = 2.*rslope3(i,k,1)+2.*diameter*rslope2(i,k,1)            &amp;
+                      +diameter**2*rslope(i,k,1)
+              praci(i,k) = pi*qci(i,k,2)*n0r*abs(vt2r-vt2i)*acrfac/4.
+              praci(i,k) = min(praci(i,k),qci(i,k,2)/dtcld)
+!-------------------------------------------------------------
+! piacr: Accretion of rain by cloud ice [HL A19] [LFO 26]
+!        (T&lt;T0: R-&gt;S or R-&gt;G)
+!-------------------------------------------------------------
+              piacr(i,k) = pi**2*avtr*n0r*denr*xni(i,k)*denfac(i,k)            &amp;
+                          *g6pbr*rslope3(i,k,1)*rslope3(i,k,1)                 &amp;
+                          *rslopeb(i,k,1)/24./den(i,k)
+              piacr(i,k) = min(piacr(i,k),qrs(i,k,1)/dtcld)
+            endif
+!-------------------------------------------------------------
+! psaci: Accretion of cloud ice by snow [HDC 10]
+!        (T&lt;T0: I-&gt;S)
+!-------------------------------------------------------------
+            if(qrs(i,k,2).gt.qcrmin) then
+              acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2)            &amp;
+                      +diameter**2*rslope(i,k,2)
+              psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k)                 &amp;
+                          *abs(vt2ave-vt2i)*acrfac/4.
+              psaci(i,k) = min(psaci(i,k),qci(i,k,2)/dtcld)
+            endif
+!-------------------------------------------------------------
+! pgaci: Accretion of cloud ice by graupel [HL A17] [LFO 41]
+!        (T&lt;T0: I-&gt;G)
+!-------------------------------------------------------------
+            if(qrs(i,k,3).gt.qcrmin) then
+              egi = exp(0.07*(-supcol))
+              acrfac = 2.*rslope3(i,k,3)+2.*diameter*rslope2(i,k,3)            &amp;
+                      +diameter**2*rslope(i,k,3)
+              pgaci(i,k) = pi*egi*qci(i,k,2)*n0g*abs(vt2ave-vt2i)*acrfac/4.
+              pgaci(i,k) = min(pgaci(i,k),qci(i,k,2)/dtcld)
+            endif
+          endif
+!-------------------------------------------------------------
+! psacw: Accretion of cloud water by snow  [HL A7] [LFO 24]
+!        (T&lt;T0: C-&gt;S, and T&gt;=T0: C-&gt;R)
+!-------------------------------------------------------------
+          if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then
+            psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2)   &amp;    
+                        *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld)
+          endif
+!-------------------------------------------------------------
+! pgacw: Accretion of cloud water by graupel [HL A6] [LFO 40]
+!        (T&lt;T0: C-&gt;G, and T&gt;=T0: C-&gt;R)
+!-------------------------------------------------------------
+          if(qrs(i,k,3).gt.qcrmin.and.qci(i,k,1).gt.qmin) then
+            pgacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3)               &amp;
+                        *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld)
+          endif
+!-------------------------------------------------------------
+! paacw: Accretion of cloud water by averaged snow/graupel 
+!        (T&lt;T0: C-&gt;G or S, and T&gt;=T0: C-&gt;R) 
+!-------------------------------------------------------------
+          if(qrs(i,k,2).gt.qcrmin.and.qrs(i,k,3).gt.qcrmin) then
+            paacw(i,k) = (qrs(i,k,2)*psacw(i,k)+qrs(i,k,3)*pgacw(i,k))         &amp; 
+                        /(qsum(i,k))
+           endif      
+!-------------------------------------------------------------
+! pracs: Accretion of snow by rain [HL A11] [LFO 27]
+!         (T&lt;T0: S-&gt;G)
+!-------------------------------------------------------------
+          if(qrs(i,k,2).gt.qcrmin.and.qrs(i,k,1).gt.qcrmin) then
+            if(supcol.gt.0) then
+              acrfac = 5.*rslope3(i,k,2)*rslope3(i,k,2)*rslope(i,k,1)          &amp;
+                      +2.*rslope3(i,k,2)*rslope2(i,k,2)*rslope2(i,k,1)         &amp;
+                      +.5*rslope2(i,k,2)*rslope2(i,k,2)*rslope3(i,k,1)
+              pracs(i,k) = pi**2*n0r*n0s*n0sfac(i,k)*abs(vt2r-vt2ave)          &amp;
+                          *(dens/den(i,k))*acrfac
+              pracs(i,k) = min(pracs(i,k),qrs(i,k,2)/dtcld)
+            endif
+!-------------------------------------------------------------
+! psacr: Accretion of rain by snow [HL A10] [LFO 28]
+!         (T&lt;T0:R-&gt;S or R-&gt;G) (T&gt;=T0: enhance melting of snow)
+!-------------------------------------------------------------
+            acrfac = 5.*rslope3(i,k,1)*rslope3(i,k,1)*rslope(i,k,2)            &amp;
+                    +2.*rslope3(i,k,1)*rslope2(i,k,1)*rslope2(i,k,2)           &amp;
+                    +.5*rslope2(i,k,1)*rslope2(i,k,1)*rslope3(i,k,2)
+            psacr(i,k) = pi**2*n0r*n0s*n0sfac(i,k)*abs(vt2ave-vt2r)            &amp;
+                        *(denr/den(i,k))*acrfac
+            psacr(i,k) = min(psacr(i,k),qrs(i,k,1)/dtcld)
+          endif
+!-------------------------------------------------------------
+! pgacr: Accretion of rain by graupel [HL A12] [LFO 42]
+!         (T&lt;T0: R-&gt;G) (T&gt;=T0: enhance melting of graupel)
+!-------------------------------------------------------------
+          if(qrs(i,k,3).gt.qcrmin.and.qrs(i,k,1).gt.qcrmin) then
+            acrfac = 5.*rslope3(i,k,1)*rslope3(i,k,1)*rslope(i,k,3)            &amp;
+                    +2.*rslope3(i,k,1)*rslope2(i,k,1)*rslope2(i,k,3)           &amp;
+                    +.5*rslope2(i,k,1)*rslope2(i,k,1)*rslope3(i,k,3)
+            pgacr(i,k) = pi**2*n0r*n0g*abs(vt2ave-vt2r)*(denr/den(i,k))        &amp;
+                        *acrfac
+            pgacr(i,k) = min(pgacr(i,k),qrs(i,k,1)/dtcld)
+          endif
+!
+!-------------------------------------------------------------
+! pgacs: Accretion of snow by graupel [HL A13] [LFO 29]
+!        (S-&gt;G): This process is eliminated in V3.0 with the 
+!        new combined snow/graupel fall speeds
+!-------------------------------------------------------------
+          if(qrs(i,k,3).gt.qcrmin.and.qrs(i,k,2).gt.qcrmin) then
+            pgacs(i,k) = 0.
+          endif
+          if(supcol.le.0) then
+            xlf = xlf0
+!-------------------------------------------------------------
+! pseml: Enhanced melting of snow by accretion of water [HL A34]
+!        (T&gt;=T0: S-&gt;R)
+!-------------------------------------------------------------
+            if(qrs(i,k,2).gt.0.)                                               &amp;
+              pseml(i,k) = min(max(cliq*supcol*(paacw(i,k)+psacr(i,k))         &amp;
+                          /xlf,-qrs(i,k,2)/dtcld),0.)
+!-------------------------------------------------------------
+! pgeml: Enhanced melting of graupel by accretion of water [HL A24] [RH84 A21-A22]
+!        (T&gt;=T0: G-&gt;R)
+!-------------------------------------------------------------
+            if(qrs(i,k,3).gt.0.)                                               &amp;
+              pgeml(i,k) = min(max(cliq*supcol*(paacw(i,k)+pgacr(i,k))         &amp;
+                          /xlf,-qrs(i,k,3)/dtcld),0.)
+          endif
+          if(supcol.gt.0) then
+!-------------------------------------------------------------
+! pidep: Deposition/Sublimation rate of ice [HDC 9]
+!       (T&lt;T0: V-&gt;I or I-&gt;V)
+!-------------------------------------------------------------
+            if(qci(i,k,2).gt.0.and.ifsat.ne.1) then
+              pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2)
+              supice = satdt-prevp(i,k)
+              if(pidep(i,k).lt.0.) then
+                pidep(i,k) = max(max(pidep(i,k),satdt/2),supice)
+                pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld)
+              else
+                pidep(i,k) = min(min(pidep(i,k),satdt/2),supice)
+              endif
+              if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1
+            endif
+!-------------------------------------------------------------
+! psdep: deposition/sublimation rate of snow [HDC 14]
+!        (T&lt;T0: V-&gt;S or S-&gt;V)
+!-------------------------------------------------------------
+            if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then
+              coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2))
+              psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k,2)   &amp;    
+                           + precs2*work2(i,k)*coeres)/work1(i,k,2)
+              supice = satdt-prevp(i,k)-pidep(i,k)
+              if(psdep(i,k).lt.0.) then
+                psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld)
+                psdep(i,k) = max(max(psdep(i,k),satdt/2),supice)
+              else
+                psdep(i,k) = min(min(psdep(i,k),satdt/2),supice)
+              endif
+              if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt))          &amp;
+                ifsat = 1
+            endif
+!-------------------------------------------------------------
+! pgdep: deposition/sublimation rate of graupel [HL A21] [LFO 46]
+!        (T&lt;T0: V-&gt;G or G-&gt;V)
+!-------------------------------------------------------------
+            if(qrs(i,k,3).gt.0..and.ifsat.ne.1) then
+              coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3))
+              pgdep(i,k) = (rh(i,k,2)-1.)*(precg1*rslope2(i,k,3)               &amp;
+                              +precg2*work2(i,k)*coeres)/work1(i,k,2)
+              supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k)
+              if(pgdep(i,k).lt.0.) then
+                pgdep(i,k) = max(pgdep(i,k),-qrs(i,k,3)/dtcld)
+                pgdep(i,k) = max(max(pgdep(i,k),satdt/2),supice)
+              else
+                pgdep(i,k) = min(min(pgdep(i,k),satdt/2),supice)
+              endif
+              if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)+pgdep(i,k)).ge.          &amp;
+                abs(satdt)) ifsat = 1
+            endif
+!-------------------------------------------------------------
+! pigen: generation(nucleation) of ice from vapor [HL 50] [HDC 7-8]
+!       (T&lt;T0: V-&gt;I)
+!-------------------------------------------------------------
+            if(supsat.gt.0.and.ifsat.ne.1) then
+              supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k)-pgdep(i,k)
+              xni0 = 1.e3*exp(0.1*supcol)
+              roqi0 = 4.92e-11*xni0**1.33
+              pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.))/dtcld)
+              pigen(i,k) = min(min(pigen(i,k),satdt),supice)
+            endif
+!
+!-------------------------------------------------------------
+! psaut: conversion(aggregation) of ice to snow [HDC 12]
+!        (T&lt;T0: I-&gt;S)
+!-------------------------------------------------------------
+            if(qci(i,k,2).gt.0.) then
+              qimax = roqimax/den(i,k)
+              psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld)
+            endif
+!
+!-------------------------------------------------------------
+! pgaut: conversion(aggregation) of snow to graupel [HL A4] [LFO 37]
+!        (T&lt;T0: S-&gt;G)
+!-------------------------------------------------------------
+            if(qrs(i,k,2).gt.0.) then
+              alpha2 = 1.e-3*exp(0.09*(-supcol))
+              pgaut(i,k) = min(max(0.,alpha2*(qrs(i,k,2)-qs0)),qrs(i,k,2)/dtcld)
+            endif
+          endif
+!
+!-------------------------------------------------------------
+! psevp: Evaporation of melting snow [HL A35] [RH83 A27]
+!       (T&gt;=T0: S-&gt;V)
+!-------------------------------------------------------------
+          if(supcol.lt.0.) then
+            if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) then
+              coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2))
+              psevp(i,k) = (rh(i,k,1)-1.)*n0sfac(i,k)*(precs1                  &amp;
+                           *rslope2(i,k,2)+precs2*work2(i,k)                   &amp;
+                           *coeres)/work1(i,k,1)
+              psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.)
+            endif
+!-------------------------------------------------------------
+! pgevp: Evaporation of melting graupel [HL A25] [RH84 A19]
+!       (T&gt;=T0: G-&gt;V)
+!-------------------------------------------------------------
+            if(qrs(i,k,3).gt.0..and.rh(i,k,1).lt.1.) then
+              coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3))
+              pgevp(i,k) = (rh(i,k,1)-1.)*(precg1*rslope2(i,k,3)               &amp;
+                         +precg2*work2(i,k)*coeres)/work1(i,k,1)
+              pgevp(i,k) = min(max(pgevp(i,k),-qrs(i,k,3)/dtcld),0.)
+            endif
+          endif
+        enddo
+      enddo
+!
+!
+!----------------------------------------------------------------
+!     check mass conservation of generation terms and feedback to the
+!     large scale
+!
+      do k = kts, kte
+        do i = its, ite
+!
+          delta2=0.
+          delta3=0.
+          if(qrs(i,k,1).lt.1.e-4.and.qrs(i,k,2).lt.1.e-4) delta2=1.
+          if(qrs(i,k,1).lt.1.e-4) delta3=1.
+          if(t(i,k).le.t0c) then
+!
+!     cloud water
+!
+            value = max(qmin,qci(i,k,1))
+            source = (praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k))*dtcld
+            if (source.gt.value) then
+              factor = value/source
+              praut(i,k) = praut(i,k)*factor
+              pracw(i,k) = pracw(i,k)*factor
+              paacw(i,k) = paacw(i,k)*factor
+            endif
+!
+!     cloud ice
+!
+            value = max(qmin,qci(i,k,2))
+            source = (psaut(i,k)-pigen(i,k)-pidep(i,k)+praci(i,k)+psaci(i,k)   &amp;     
+                    +pgaci(i,k))*dtcld
+            if (source.gt.value) then
+              factor = value/source
+              psaut(i,k) = psaut(i,k)*factor
+              pigen(i,k) = pigen(i,k)*factor
+              pidep(i,k) = pidep(i,k)*factor
+              praci(i,k) = praci(i,k)*factor
+              psaci(i,k) = psaci(i,k)*factor
+              pgaci(i,k) = pgaci(i,k)*factor
+            endif
+!
+!     rain
+!
+            value = max(qmin,qrs(i,k,1))
+            source = (-praut(i,k)-prevp(i,k)-pracw(i,k)+piacr(i,k)+psacr(i,k)  &amp;    
+                     +pgacr(i,k))*dtcld
+            if (source.gt.value) then
+              factor = value/source
+              praut(i,k) = praut(i,k)*factor
+              prevp(i,k) = prevp(i,k)*factor
+              pracw(i,k) = pracw(i,k)*factor
+              piacr(i,k) = piacr(i,k)*factor
+              psacr(i,k) = psacr(i,k)*factor
+              pgacr(i,k) = pgacr(i,k)*factor
+            endif
+!
+!     snow
+!
+            value = max(qmin,qrs(i,k,2))
+            source = -(psdep(i,k)+psaut(i,k)-pgaut(i,k)+paacw(i,k)+piacr(i,k)  &amp;        
+                     *delta3+praci(i,k)*delta3-pracs(i,k)*(1.-delta2)          &amp;
+                     +psacr(i,k)*delta2+psaci(i,k)-pgacs(i,k) )*dtcld
+            if (source.gt.value) then
+              factor = value/source
+              psdep(i,k) = psdep(i,k)*factor
+              psaut(i,k) = psaut(i,k)*factor
+              pgaut(i,k) = pgaut(i,k)*factor
+              paacw(i,k) = paacw(i,k)*factor
+              piacr(i,k) = piacr(i,k)*factor
+              praci(i,k) = praci(i,k)*factor
+              psaci(i,k) = psaci(i,k)*factor
+              pracs(i,k) = pracs(i,k)*factor
+              psacr(i,k) = psacr(i,k)*factor
+              pgacs(i,k) = pgacs(i,k)*factor
+            endif
+!
+!     graupel
+!
+            value = max(qmin,qrs(i,k,3))
+            source = -(pgdep(i,k)+pgaut(i,k)                                   &amp;
+                     +piacr(i,k)*(1.-delta3)+praci(i,k)*(1.-delta3)            &amp;
+                     +psacr(i,k)*(1.-delta2)+pracs(i,k)*(1.-delta2)            &amp;
+                     +pgaci(i,k)+paacw(i,k)+pgacr(i,k)+pgacs(i,k))*dtcld
+            if (source.gt.value) then
+              factor = value/source
+              pgdep(i,k) = pgdep(i,k)*factor
+              pgaut(i,k) = pgaut(i,k)*factor
+              piacr(i,k) = piacr(i,k)*factor
+              praci(i,k) = praci(i,k)*factor
+              psacr(i,k) = psacr(i,k)*factor
+              pracs(i,k) = pracs(i,k)*factor
+              paacw(i,k) = paacw(i,k)*factor
+              pgaci(i,k) = pgaci(i,k)*factor
+              pgacr(i,k) = pgacr(i,k)*factor
+              pgacs(i,k) = pgacs(i,k)*factor
+            endif
+!
+            work2(i,k)=-(prevp(i,k)+psdep(i,k)+pgdep(i,k)+pigen(i,k)+pidep(i,k))
+!     update
+            q(i,k) = q(i,k)+work2(i,k)*dtcld
+            qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k)                 &amp;
+                           +paacw(i,k)+paacw(i,k))*dtcld,0.)
+            qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k)                 &amp;
+                           +prevp(i,k)-piacr(i,k)-pgacr(i,k)                   &amp;
+                           -psacr(i,k))*dtcld,0.)
+            qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+praci(i,k)                 &amp;
+                           +psaci(i,k)+pgaci(i,k)-pigen(i,k)-pidep(i,k))       &amp;
+                           *dtcld,0.)
+            qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k)+paacw(i,k)      &amp;
+                           -pgaut(i,k)+piacr(i,k)*delta3                       &amp;
+                           +praci(i,k)*delta3+psaci(i,k)-pgacs(i,k)            &amp;
+                           -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2)          &amp;
+                           *dtcld,0.)
+            qrs(i,k,3) = max(qrs(i,k,3)+(pgdep(i,k)+pgaut(i,k)                 &amp;
+                           +piacr(i,k)*(1.-delta3)                             &amp;
+                           +praci(i,k)*(1.-delta3)+psacr(i,k)*(1.-delta2)      &amp;
+                           +pracs(i,k)*(1.-delta2)+pgaci(i,k)+paacw(i,k)       &amp;
+                           +pgacr(i,k)+pgacs(i,k))*dtcld,0.)
+            xlf = xls-xl(i,k)
+            xlwork2 = -xls*(psdep(i,k)+pgdep(i,k)+pidep(i,k)+pigen(i,k))       &amp;
+                      -xl(i,k)*prevp(i,k)-xlf*(piacr(i,k)+paacw(i,k)           &amp;
+                      +paacw(i,k)+pgacr(i,k)+psacr(i,k))
+            t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld
+          else
+!
+!     cloud water
+!
+            value = max(qmin,qci(i,k,1))
+            source=(praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k))*dtcld
+            if (source.gt.value) then
+              factor = value/source
+              praut(i,k) = praut(i,k)*factor
+              pracw(i,k) = pracw(i,k)*factor
+              paacw(i,k) = paacw(i,k)*factor
+            endif
+!
+!     rain
+!
+            value = max(qmin,qrs(i,k,1))
+            source = (-paacw(i,k)-praut(i,k)+pseml(i,k)+pgeml(i,k)-pracw(i,k)  &amp;  
+                     -paacw(i,k)-prevp(i,k))*dtcld
+            if (source.gt.value) then
+              factor = value/source
+              praut(i,k) = praut(i,k)*factor
+              prevp(i,k) = prevp(i,k)*factor
+              pracw(i,k) = pracw(i,k)*factor
+              paacw(i,k) = paacw(i,k)*factor
+              pseml(i,k) = pseml(i,k)*factor
+              pgeml(i,k) = pgeml(i,k)*factor
+            endif
+!
+!     snow
+!
+            value = max(qcrmin,qrs(i,k,2))
+            source=(pgacs(i,k)-pseml(i,k)-psevp(i,k))*dtcld
+            if (source.gt.value) then
+              factor = value/source
+              pgacs(i,k) = pgacs(i,k)*factor
+              psevp(i,k) = psevp(i,k)*factor
+              pseml(i,k) = pseml(i,k)*factor
+            endif
+!
+!     graupel
+!
+            value = max(qcrmin,qrs(i,k,3))
+            source=-(pgacs(i,k)+pgevp(i,k)+pgeml(i,k))*dtcld
+            if (source.gt.value) then
+              factor = value/source
+              pgacs(i,k) = pgacs(i,k)*factor
+              pgevp(i,k) = pgevp(i,k)*factor
+              pgeml(i,k) = pgeml(i,k)*factor
+            endif
+            work2(i,k)=-(prevp(i,k)+psevp(i,k)+pgevp(i,k))
+!     update
+            q(i,k) = q(i,k)+work2(i,k)*dtcld
+            qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k)                 &amp;
+                    +paacw(i,k)+paacw(i,k))*dtcld,0.)
+            qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k)                 &amp;
+                    +prevp(i,k)+paacw(i,k)+paacw(i,k)-pseml(i,k)               &amp;
+                    -pgeml(i,k))*dtcld,0.)
+            qrs(i,k,2) = max(qrs(i,k,2)+(psevp(i,k)-pgacs(i,k)                 &amp;
+                    +pseml(i,k))*dtcld,0.)
+            qrs(i,k,3) = max(qrs(i,k,3)+(pgacs(i,k)+pgevp(i,k)                 &amp;
+                    +pgeml(i,k))*dtcld,0.)
+            xlf = xls-xl(i,k)
+            xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)+pgevp(i,k))              &amp;
+                      -xlf*(pseml(i,k)+pgeml(i,k))
+            t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld
+          endif
+        enddo
+      enddo
+!
+! Inline expansion for fpvs
+!         qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c)
+!         qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c)
+      hsub = xls
+      hvap = xlv0
+      cvap = cpv
+      ttp=t0c+0.01
+      dldt=cvap-cliq
+      xa=-dldt/rv
+      xb=xa+hvap/(rv*ttp)
+      dldti=cvap-cice
+      xai=-dldti/rv
+      xbi=xai+hsub/(rv*ttp)
+      do k = kts, kte
+        do i = its, ite
+          tr=ttp/t(i,k)
+          qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr))
+          qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k))
+          qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1))
+          qs(i,k,1) = max(qs(i,k,1),qmin)
+          tr=ttp/t(i,k)
+          if(t(i,k).lt.ttp) then
+            qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr))
+          else
+            qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr))
+          endif
+          qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k))
+          qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2))
+          qs(i,k,2) = max(qs(i,k,2),qmin)
+        enddo
+      enddo
+!
+!----------------------------------------------------------------
+!  pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6]
+!     if there exists additional water vapor condensated/if
+!     evaporation of cloud water is not enough to remove subsaturation
+!
+      do k = kts, kte
+        do i = its, ite
+          work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k))
+          work2(i,k) = qci(i,k,1)+work1(i,k,1)
+          pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld)
+          if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.)                          &amp;
+            pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld
+          q(i,k) = q(i,k)-pcond(i,k)*dtcld
+          qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.)
+          t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld
+        enddo
+      enddo
+!
+!
+!----------------------------------------------------------------
+!     padding for small values
+!
+      do k = kts, kte
+        do i = its, ite
+          if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0
+          if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0
+        enddo
+      enddo
+      enddo                  ! big loops
+  END SUBROUTINE wsm62d
+! ...................................................................
+      REAL FUNCTION rgmma(x)
+!-------------------------------------------------------------------
+  IMPLICIT NONE
+!-------------------------------------------------------------------
+!     rgmma function:  use infinite product form
+      REAL :: euler
+      PARAMETER (euler=0.577215664901532)
+      REAL :: x, y
+      INTEGER :: i
+      if(x.eq.1.)then
+        rgmma=0.
+          else
+        rgmma=x*exp(euler*x)
+        do i=1,10000
+          y=float(i)
+          rgmma=rgmma*(1.000+x/y)*exp(-x/y)
+        enddo
+        rgmma=1./rgmma
+      endif
+      END FUNCTION rgmma
+!
+!--------------------------------------------------------------------------
+      REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c)
+!--------------------------------------------------------------------------
+      IMPLICIT NONE
+!--------------------------------------------------------------------------
+      REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti,         &amp;
+           xai,xbi,ttp,tr
+      INTEGER ice
+! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+      ttp=t0c+0.01
+      dldt=cvap-cliq
+      xa=-dldt/rv
+      xb=xa+hvap/(rv*ttp)
+      dldti=cvap-cice
+      xai=-dldti/rv
+      xbi=xai+hsub/(rv*ttp)
+      tr=ttp/t
+      if(t.lt.ttp.and.ice.eq.1) then
+        fpvs=psat*(tr**xai)*exp(xbi*(1.-tr))
+      else
+        fpvs=psat*(tr**xa)*exp(xb*(1.-tr))
+      endif
+! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+      END FUNCTION fpvs
+!-------------------------------------------------------------------
+  SUBROUTINE wsm6init(den0,denr,dens,cl,cpv,allowed_to_read)
+!-------------------------------------------------------------------
+  IMPLICIT NONE
+!-------------------------------------------------------------------
+!.... constants which may not be tunable
+   REAL, INTENT(IN) :: den0,denr,dens,cl,cpv
+   LOGICAL, INTENT(IN) :: allowed_to_read
+!
+   pi = 4.*atan(1.)
+   xlv1 = cl-cpv
+!
+   qc0  = 4./3.*pi*denr*r0**3*xncr/den0  ! 0.419e-3 -- .61e-3
+   qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03
+!
+   bvtr1 = 1.+bvtr
+   bvtr2 = 2.5+.5*bvtr
+   bvtr3 = 3.+bvtr
+   bvtr4 = 4.+bvtr
+   bvtr6 = 6.+bvtr
+   g1pbr = rgmma(bvtr1)
+   g3pbr = rgmma(bvtr3)
+   g4pbr = rgmma(bvtr4)            ! 17.837825
+   g6pbr = rgmma(bvtr6)
+   g5pbro2 = rgmma(bvtr2)          ! 1.8273
+   pvtr = avtr*g4pbr/6.
+   eacrr = 1.0
+   pacrr = pi*n0r*avtr*g3pbr*.25*eacrr
+   precr1 = 2.*pi*n0r*.78
+   precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2
+   roqimax = 2.08e22*dimax**8
+!
+   bvts1 = 1.+bvts
+   bvts2 = 2.5+.5*bvts
+   bvts3 = 3.+bvts
+   bvts4 = 4.+bvts
+   g1pbs = rgmma(bvts1)    !.8875
+   g3pbs = rgmma(bvts3)
+   g4pbs = rgmma(bvts4)    ! 12.0786
+   g5pbso2 = rgmma(bvts2)
+   pvts = avts*g4pbs/6.
+   pacrs = pi*n0s*avts*g3pbs*.25
+   precs1 = 4.*n0s*.65
+   precs2 = 4.*n0s*.44*avts**.5*g5pbso2
+   pidn0r =  pi*denr*n0r
+   pidn0s =  pi*dens*n0s
+!
+   pacrc = pi*n0s*avts*g3pbs*.25*eacrc
+!
+   bvtg1 = 1.+bvtg
+   bvtg2 = 2.5+.5*bvtg
+   bvtg3 = 3.+bvtg
+   bvtg4 = 4.+bvtg
+   g1pbg = rgmma(bvtg1)
+   g3pbg = rgmma(bvtg3)
+   g4pbg = rgmma(bvtg4)
+   pacrg = pi*n0g*avtg*g3pbg*.25
+   g5pbgo2 = rgmma(bvtg2)
+   pvtg = avtg*g4pbg/6.
+   precg1 = 2.*pi*n0g*.78
+   precg2 = 2.*pi*n0g*.31*avtg**.5*g5pbgo2
+   pidn0g =  pi*deng*n0g
+!
+   rslopermax = 1./lamdarmax
+   rslopesmax = 1./lamdasmax
+   rslopegmax = 1./lamdagmax
+   rsloperbmax = rslopermax ** bvtr
+   rslopesbmax = rslopesmax ** bvts
+   rslopegbmax = rslopegmax ** bvtg
+   rsloper2max = rslopermax * rslopermax
+   rslopes2max = rslopesmax * rslopesmax
+   rslopeg2max = rslopegmax * rslopegmax
+   rsloper3max = rsloper2max * rslopermax
+   rslopes3max = rslopes2max * rslopesmax
+   rslopeg3max = rslopeg2max * rslopegmax
+!
+  END SUBROUTINE wsm6init
+!------------------------------------------------------------------------------
+      subroutine slope_wsm6(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3,   &amp;
+                            vt,its,ite,kts,kte)
+  IMPLICIT NONE
+  INTEGER       ::               its,ite, jts,jte, kts,kte
+  REAL, DIMENSION( its:ite , kts:kte,3) ::                                     &amp;
+                                                                          qrs, &amp;
+                                                                       rslope, &amp;
+                                                                      rslopeb, &amp;                                                 
+                                                                      rslope2, &amp;                                                 
+                                                                      rslope3, &amp;                                                 
+                                                                           vt
+  REAL, DIMENSION( its:ite , kts:kte) ::                                       &amp;
+                                                                          den, &amp;
+                                                                       denfac, &amp;
+                                                                            t
+  REAL, PARAMETER  :: t0c = 273.15
+  REAL, DIMENSION( its:ite , kts:kte ) ::                                      &amp;
+                                                                       n0sfac
+  REAL       ::  lamdar, lamdas, lamdag, x, y, z, supcol
+  integer :: i, j, k
+!----------------------------------------------------------------
+!     size distributions: (x=mixing ratio, y=air density):
+!     valid for mixing ratio &gt; 1.e-9 kg/kg.
+      lamdar(x,y)=   sqrt(sqrt(pidn0r/(x*y)))      ! (pidn0r/(x*y))**.25
+      lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y)))    ! (pidn0s*z/(x*y))**.25
+      lamdag(x,y)=   sqrt(sqrt(pidn0g/(x*y)))      ! (pidn0g/(x*y))**.25
+!
+      do k = kts, kte
+        do i = its, ite
+          supcol = t0c-t(i,k)
+!---------------------------------------------------------------
+! n0s: Intercept parameter for snow [m-4] [HDC 6]
+!---------------------------------------------------------------
+          n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)
+          if(qrs(i,k,1).le.qcrmin)then
+            rslope(i,k,1) = rslopermax
+            rslopeb(i,k,1) = rsloperbmax
+            rslope2(i,k,1) = rsloper2max
+            rslope3(i,k,1) = rsloper3max
+          else
+            rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k))
+            rslopeb(i,k,1) = rslope(i,k,1)**bvtr
+            rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1)
+            rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1)
+          endif
+          if(qrs(i,k,2).le.qcrmin)then
+            rslope(i,k,2) = rslopesmax
+            rslopeb(i,k,2) = rslopesbmax
+            rslope2(i,k,2) = rslopes2max
+            rslope3(i,k,2) = rslopes3max
+          else
+            rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k))
+            rslopeb(i,k,2) = rslope(i,k,2)**bvts
+            rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2)
+            rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2)
+          endif
+          if(qrs(i,k,3).le.qcrmin)then
+            rslope(i,k,3) = rslopegmax
+            rslopeb(i,k,3) = rslopegbmax
+            rslope2(i,k,3) = rslopeg2max
+            rslope3(i,k,3) = rslopeg3max
+          else
+            rslope(i,k,3) = 1./lamdag(qrs(i,k,3),den(i,k))
+            rslopeb(i,k,3) = rslope(i,k,3)**bvtg
+            rslope2(i,k,3) = rslope(i,k,3)*rslope(i,k,3)
+            rslope3(i,k,3) = rslope2(i,k,3)*rslope(i,k,3)
+          endif
+          vt(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)
+          vt(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)
+          vt(i,k,3) = pvtg*rslopeb(i,k,3)*denfac(i,k)
+          if(qrs(i,k,1).le.0.0) vt(i,k,1) = 0.0
+          if(qrs(i,k,2).le.0.0) vt(i,k,2) = 0.0
+          if(qrs(i,k,3).le.0.0) vt(i,k,3) = 0.0
+        enddo
+      enddo
+  END subroutine slope_wsm6
+!-----------------------------------------------------------------------------
+      subroutine slope_rain(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3,   &amp; 
+                            vt,its,ite,kts,kte)
+  IMPLICIT NONE
+  INTEGER       ::               its,ite, jts,jte, kts,kte
+  REAL, DIMENSION( its:ite , kts:kte) ::                                       &amp;
+                                                                          qrs, &amp;
+                                                                       rslope, &amp;
+                                                                      rslopeb, &amp;
+                                                                      rslope2, &amp;
+                                                                      rslope3, &amp;
+                                                                           vt, &amp;      
+                                                                          den, &amp;
+                                                                       denfac, &amp;
+                                                                            t
+  REAL, PARAMETER  :: t0c = 273.15
+  REAL, DIMENSION( its:ite , kts:kte ) ::                                      &amp;
+                                                                       n0sfac
+  REAL       ::  lamdar, x, y, z, supcol
+  integer :: i, j, k
+!----------------------------------------------------------------
+!     size distributions: (x=mixing ratio, y=air density):
+!     valid for mixing ratio &gt; 1.e-9 kg/kg.
+      lamdar(x,y)=   sqrt(sqrt(pidn0r/(x*y)))      ! (pidn0r/(x*y))**.25
+!
+      do k = kts, kte
+        do i = its, ite
+          if(qrs(i,k).le.qcrmin)then
+            rslope(i,k) = rslopermax
+            rslopeb(i,k) = rsloperbmax
+            rslope2(i,k) = rsloper2max
+            rslope3(i,k) = rsloper3max
+          else
+            rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k))
+            rslopeb(i,k) = rslope(i,k)**bvtr
+            rslope2(i,k) = rslope(i,k)*rslope(i,k)
+            rslope3(i,k) = rslope2(i,k)*rslope(i,k)
+          endif
+          vt(i,k) = pvtr*rslopeb(i,k)*denfac(i,k)
+          if(qrs(i,k).le.0.0) vt(i,k) = 0.0
+        enddo
+      enddo
+  END subroutine slope_rain
+!------------------------------------------------------------------------------
+      subroutine slope_snow(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3,   &amp;
+                            vt,its,ite,kts,kte)
+  IMPLICIT NONE
+  INTEGER       ::               its,ite, jts,jte, kts,kte
+  REAL, DIMENSION( its:ite , kts:kte) ::                                       &amp;
+                                                                          qrs, &amp;
+                                                                       rslope, &amp;
+                                                                      rslopeb, &amp;
+                                                                      rslope2, &amp;
+                                                                      rslope3, &amp;
+                                                                           vt, &amp;  
+                                                                          den, &amp;
+                                                                       denfac, &amp;
+                                                                            t
+  REAL, PARAMETER  :: t0c = 273.15
+  REAL, DIMENSION( its:ite , kts:kte ) ::                                      &amp;
+                                                                       n0sfac
+  REAL       ::  lamdas, x, y, z, supcol
+  integer :: i, j, k
+!----------------------------------------------------------------
+!     size distributions: (x=mixing ratio, y=air density):
+!     valid for mixing ratio &gt; 1.e-9 kg/kg.
+      lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y)))    ! (pidn0s*z/(x*y))**.25
+!
+      do k = kts, kte
+        do i = its, ite
+          supcol = t0c-t(i,k)
+!---------------------------------------------------------------
+! n0s: Intercept parameter for snow [m-4] [HDC 6]
+!---------------------------------------------------------------
+          n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)
+          if(qrs(i,k).le.qcrmin)then
+            rslope(i,k) = rslopesmax
+            rslopeb(i,k) = rslopesbmax
+            rslope2(i,k) = rslopes2max
+            rslope3(i,k) = rslopes3max
+          else
+            rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k))
+            rslopeb(i,k) = rslope(i,k)**bvts
+            rslope2(i,k) = rslope(i,k)*rslope(i,k)
+            rslope3(i,k) = rslope2(i,k)*rslope(i,k)
+          endif
+          vt(i,k) = pvts*rslopeb(i,k)*denfac(i,k)
+          if(qrs(i,k).le.0.0) vt(i,k) = 0.0
+        enddo
+      enddo
+  END subroutine slope_snow
+!----------------------------------------------------------------------------------
+      subroutine slope_graup(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3,   &amp;
+                            vt,its,ite,kts,kte)
+  IMPLICIT NONE
+  INTEGER       ::               its,ite, jts,jte, kts,kte
+  REAL, DIMENSION( its:ite , kts:kte) ::                                       &amp;
+                                                                          qrs, &amp;
+                                                                       rslope, &amp;
+                                                                      rslopeb, &amp;
+                                                                      rslope2, &amp;
+                                                                      rslope3, &amp;
+                                                                           vt, &amp;  
+                                                                          den, &amp;
+                                                                       denfac, &amp;
+                                                                            t
+  REAL, PARAMETER  :: t0c = 273.15
+  REAL, DIMENSION( its:ite , kts:kte ) ::                                      &amp;
+                                                                       n0sfac
+  REAL       ::  lamdag, x, y, z, supcol
+  integer :: i, j, k
+!----------------------------------------------------------------
+!     size distributions: (x=mixing ratio, y=air density):
+!     valid for mixing ratio &gt; 1.e-9 kg/kg.
+      lamdag(x,y)=   sqrt(sqrt(pidn0g/(x*y)))      ! (pidn0g/(x*y))**.25
+!
+      do k = kts, kte
+        do i = its, ite
+!---------------------------------------------------------------
+! n0s: Intercept parameter for snow [m-4] [HDC 6]
+!---------------------------------------------------------------
+          if(qrs(i,k).le.qcrmin)then
+            rslope(i,k) = rslopegmax
+            rslopeb(i,k) = rslopegbmax
+            rslope2(i,k) = rslopeg2max
+            rslope3(i,k) = rslopeg3max
+          else
+            rslope(i,k) = 1./lamdag(qrs(i,k),den(i,k))
+            rslopeb(i,k) = rslope(i,k)**bvtg
+            rslope2(i,k) = rslope(i,k)*rslope(i,k)
+            rslope3(i,k) = rslope2(i,k)*rslope(i,k)
+          endif
+          vt(i,k) = pvtg*rslopeb(i,k)*denfac(i,k)
+          if(qrs(i,k).le.0.0) vt(i,k) = 0.0
+        enddo
+      enddo
+  END subroutine slope_graup
+!---------------------------------------------------------------------------------
+!-------------------------------------------------------------------
+      SUBROUTINE nislfv_rain_plm(im,km,denl,denfacl,tkl,dzl,wwl,rql,precip,dt,id,iter)
+!-------------------------------------------------------------------
+!
+! for non-iteration semi-Lagrangain forward advection for cloud
+! with mass conservation and positive definite advection
+! 2nd order interpolation with monotonic piecewise linear method
+! this routine is under assumption of decfl &lt; 1 for semi_Lagrangian
+!
+! dzl    depth of model layer in meter
+! wwl    terminal velocity at model layer m/s
+! rql    cloud density*mixing ration
+! precip precipitation
+! dt     time step
+! id     kind of precip: 0 test case; 1 raindrop
+! iter   how many time to guess mean terminal velocity: 0 pure forward.
+!        0 : use departure wind for advection
+!        1 : use mean wind for advection
+!        &gt; 1 : use mean wind after iter-1 iterations
+!
+! author: hann-ming henry juang &lt;henry.juang@noaa.gov&gt;
+!         implemented by song-you hong
+!
+      implicit none
+      integer  im,km,id
+      real  dt
+      real  dzl(im,km),wwl(im,km),rql(im,km),precip(im)
+      real  denl(im,km),denfacl(im,km),tkl(im,km)
+!
+      integer  i,k,n,m,kk,kb,kt,iter
+      real  tl,tl2,qql,dql,qqd
+      real  th,th2,qqh,dqh
+      real  zsum,qsum,dim,dip,c1,con1,fa1,fa2
+      real  allold, allnew, zz, dzamin, cflmax, decfl
+      real  dz(km), ww(km), qq(km), wd(km), wa(km), was(km)
+      real  den(km), denfac(km), tk(km)
+      real  wi(km+1), zi(km+1), za(km+1)
+      real  qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km)
+      real  dza(km+1), qa(km+1), qmi(km+1), qpi(km+1)
+!
+      precip(:) = 0.0
+!
+      i_loop : do i=1,im
+! -----------------------------------
+      dz(:) = dzl(i,:)
+      qq(:) = rql(i,:)
+      ww(:) = wwl(i,:)
+      den(:) = denl(i,:)
+      denfac(:) = denfacl(i,:)
+      tk(:) = tkl(i,:)
+! skip for no precipitation for all layers
+      allold = 0.0
+      do k=1,km
+        allold = allold + qq(k)
+      enddo
+      if(allold.le.0.0) then
+        cycle i_loop
+      endif
+!
+! compute interface values
+      zi(1)=0.0
+      do k=1,km
+        zi(k+1) = zi(k)+dz(k)
+      enddo
+!
+! save departure wind
+      wd(:) = ww(:)
+      n=1
+ 100  continue
+! plm is 2nd order, we can use 2nd order wi or 3rd order wi
+! 2nd order interpolation to get wi
+      wi(1) = ww(1)
+      wi(km+1) = ww(km)
+      do k=2,km
+        wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k))
+      enddo
+! 3rd order interpolation to get wi
+      fa1 = 9./16.
+      fa2 = 1./16.
+      wi(1) = ww(1)
+      wi(2) = 0.5*(ww(2)+ww(1))
+      do k=3,km-1
+        wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2))
+      enddo
+      wi(km) = 0.5*(ww(km)+ww(km-1))
+      wi(km+1) = ww(km)
+!
+! terminate of top of raingroup
+      do k=2,km
+        if( ww(k).eq.0.0 ) wi(k)=ww(k-1)
+      enddo
+!
+! diffusivity of wi
+      con1 = 0.05
+      do k=km,1,-1
+        decfl = (wi(k+1)-wi(k))*dt/dz(k)
+        if( decfl .gt. con1 ) then
+          wi(k) = wi(k+1) - con1*dz(k)/dt
+        endif
+      enddo
+! compute arrival point
+      do k=1,km+1
+        za(k) = zi(k) - wi(k)*dt
+      enddo
+!
+      do k=1,km
+        dza(k) = za(k+1)-za(k)
+      enddo
+      dza(km+1) = zi(km+1) - za(km+1)
+!
+! computer deformation at arrival point
+      do k=1,km
+        qa(k) = qq(k)*dz(k)/dza(k)
+        qr(k) = qa(k)/den(k)
+      enddo
+      qa(km+1) = 0.0
+!     call maxmin(km,1,qa,' arrival points ')
+!
+! compute arrival terminal velocity, and estimate mean terminal velocity
+! then back to use mean terminal velocity
+      if( n.le.iter ) then
+        call slope_rain(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km)
+        if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km))
+        do k=1,km
+!#ifdef DEBUG
+!        print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k)
+!#endif
+! mean wind is average of departure and new arrival winds
+          ww(k) = 0.5* ( wd(k)+wa(k) )
+        enddo
+        was(:) = wa(:)
+        n=n+1
+        go to 100
+      endif
+!
+! estimate values at arrival cell interface with monotone
+      do k=2,km
+        dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k))
+        dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k))
+        if( dip*dim.le.0.0 ) then
+          qmi(k)=qa(k)
+          qpi(k)=qa(k)
+        else
+          qpi(k)=qa(k)+0.5*(dip+dim)*dza(k)
+          qmi(k)=2.0*qa(k)-qpi(k)
+          if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then
+            qpi(k) = qa(k)
+            qmi(k) = qa(k)
+          endif
+        endif
+      enddo
+      qpi(1)=qa(1)
+      qmi(1)=qa(1)
+      qmi(km+1)=qa(km+1)
+      qpi(km+1)=qa(km+1)
+!
+! interpolation to regular point
+      qn = 0.0
+      kb=1
+      kt=1
+      intp : do k=1,km
+             kb=max(kb-1,1)
+             kt=max(kt-1,1)
+! find kb and kt
+             if( zi(k).ge.za(km+1) ) then
+               exit intp
+             else
+               find_kb : do kk=kb,km
+                         if( zi(k).le.za(kk+1) ) then
+                           kb = kk
+                           exit find_kb
+                         else
+                           cycle find_kb
+                         endif
+               enddo find_kb
+               find_kt : do kk=kt,km
+                         if( zi(k+1).le.za(kk) ) then
+                           kt = kk
+                           exit find_kt
+                         else
+                           cycle find_kt
+                         endif
+               enddo find_kt
+               kt = kt - 1
+! compute q with piecewise constant method
+               if( kt.eq.kb ) then
+                 tl=(zi(k)-za(kb))/dza(kb)
+                 th=(zi(k+1)-za(kb))/dza(kb)
+                 tl2=tl*tl
+                 th2=th*th
+                 qqd=0.5*(qpi(kb)-qmi(kb))
+                 qqh=qqd*th2+qmi(kb)*th
+                 qql=qqd*tl2+qmi(kb)*tl
+                 qn(k) = (qqh-qql)/(th-tl)
+               else if( kt.gt.kb ) then
+                 tl=(zi(k)-za(kb))/dza(kb)
+                 tl2=tl*tl
+                 qqd=0.5*(qpi(kb)-qmi(kb))
+                 qql=qqd*tl2+qmi(kb)*tl
+                 dql = qa(kb)-qql
+                 zsum  = (1.-tl)*dza(kb)
+                 qsum  = dql*dza(kb)
+                 if( kt-kb.gt.1 ) then
+                 do m=kb+1,kt-1
+                   zsum = zsum + dza(m)
+                   qsum = qsum + qa(m) * dza(m)
+                 enddo
+                 endif
+                 th=(zi(k+1)-za(kt))/dza(kt)
+                 th2=th*th
+                 qqd=0.5*(qpi(kt)-qmi(kt))
+                 dqh=qqd*th2+qmi(kt)*th
+                 zsum  = zsum + th*dza(kt)
+                 qsum  = qsum + dqh*dza(kt)
+                 qn(k) = qsum/zsum
+               endif
+               cycle intp
+             endif
+!
+       enddo intp
+!
+! rain out
+      sum_precip: do k=1,km
+                    if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then
+                      precip(i) = precip(i) + qa(k)*dza(k)
+                      cycle sum_precip
+                    else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then
+                      precip(i) = precip(i) + qa(k)*(0.0-za(k))
+                      exit sum_precip
+                    endif
+                    exit sum_precip
+      enddo sum_precip
+!
+! replace the new values
+      rql(i,:) = qn(:)
+!
+! ----------------------------------
+      enddo i_loop
+!
+  END SUBROUTINE nislfv_rain_plm
+!-------------------------------------------------------------------
+      SUBROUTINE nislfv_rain_plm6(im,km,denl,denfacl,tkl,dzl,wwl,rql,rql2, precip1, precip2,dt,id,iter)
+!-------------------------------------------------------------------
+!
+! for non-iteration semi-Lagrangain forward advection for cloud
+! with mass conservation and positive definite advection
+! 2nd order interpolation with monotonic piecewise linear method
+! this routine is under assumption of decfl &lt; 1 for semi_Lagrangian
+!
+! dzl    depth of model layer in meter
+! wwl    terminal velocity at model layer m/s
+! rql    cloud density*mixing ration
+! precip precipitation
+! dt     time step
+! id     kind of precip: 0 test case; 1 raindrop
+! iter   how many time to guess mean terminal velocity: 0 pure forward.
+!        0 : use departure wind for advection
+!        1 : use mean wind for advection
+!        &gt; 1 : use mean wind after iter-1 iterations
+!
+! author: hann-ming henry juang &lt;henry.juang@noaa.gov&gt;
+!         implemented by song-you hong
+!
+      implicit none
+      integer  im,km,id
+      real  dt
+      real  dzl(im,km),wwl(im,km),rql(im,km),rql2(im,km),precip(im),precip1(im),precip2(im)
+      real  denl(im,km),denfacl(im,km),tkl(im,km)
+!
+      integer  i,k,n,m,kk,kb,kt,iter,ist
+      real  tl,tl2,qql,dql,qqd
+      real  th,th2,qqh,dqh
+      real  zsum,qsum,dim,dip,c1,con1,fa1,fa2
+      real  allold, allnew, zz, dzamin, cflmax, decfl
+      real  dz(km), ww(km), qq(km), qq2(km), wd(km), wa(km), wa2(km), was(km)
+      real  den(km), denfac(km), tk(km)
+      real  wi(km+1), zi(km+1), za(km+1)
+      real  qn(km), qr(km),qr2(km),tmp(km),tmp1(km),tmp2(km),tmp3(km)
+      real  dza(km+1), qa(km+1), qa2(km+1),qmi(km+1), qpi(km+1)
+!
+      precip(:) = 0.0
+      precip1(:) = 0.0
+      precip2(:) = 0.0
+!
+      i_loop : do i=1,im
+! -----------------------------------
+      dz(:) = dzl(i,:)
+      qq(:) = rql(i,:)
+      qq2(:) = rql2(i,:)
+      ww(:) = wwl(i,:)
+      den(:) = denl(i,:)
+      denfac(:) = denfacl(i,:)
+      tk(:) = tkl(i,:)
+! skip for no precipitation for all layers
+      allold = 0.0
+      do k=1,km
+        allold = allold + qq(k)
+      enddo
+      if(allold.le.0.0) then
+        cycle i_loop
+      endif
+!
+! compute interface values
+      zi(1)=0.0
+      do k=1,km
+        zi(k+1) = zi(k)+dz(k)
+      enddo
+!
+! save departure wind
+      wd(:) = ww(:)
+      n=1
+ 100  continue
+! plm is 2nd order, we can use 2nd order wi or 3rd order wi
+! 2nd order interpolation to get wi
+      wi(1) = ww(1)
+      wi(km+1) = ww(km)
+      do k=2,km
+        wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k))
+      enddo
+! 3rd order interpolation to get wi
+      fa1 = 9./16.
+      fa2 = 1./16.
+      wi(1) = ww(1)
+      wi(2) = 0.5*(ww(2)+ww(1))
+      do k=3,km-1
+        wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2))
+      enddo
+      wi(km) = 0.5*(ww(km)+ww(km-1))
+      wi(km+1) = ww(km)
+!
+! terminate of top of raingroup
+      do k=2,km
+        if( ww(k).eq.0.0 ) wi(k)=ww(k-1)
+      enddo
+!
+! diffusivity of wi
+      con1 = 0.05
+      do k=km,1,-1
+        decfl = (wi(k+1)-wi(k))*dt/dz(k)
+        if( decfl .gt. con1 ) then
+          wi(k) = wi(k+1) - con1*dz(k)/dt
+        endif
+      enddo
+! compute arrival point
+      do k=1,km+1
+        za(k) = zi(k) - wi(k)*dt
+      enddo
+!
+      do k=1,km
+        dza(k) = za(k+1)-za(k)
+      enddo
+      dza(km+1) = zi(km+1) - za(km+1)
+!
+! computer deformation at arrival point
+      do k=1,km
+        qa(k) = qq(k)*dz(k)/dza(k)
+        qa2(k) = qq2(k)*dz(k)/dza(k)
+        qr(k) = qa(k)/den(k)
+        qr2(k) = qa2(k)/den(k)
+      enddo
+      qa(km+1) = 0.0
+      qa2(km+1) = 0.0
+!     call maxmin(km,1,qa,' arrival points ')
+!
+! compute arrival terminal velocity, and estimate mean terminal velocity
+! then back to use mean terminal velocity
+      if( n.le.iter ) then
+        call slope_snow(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km)
+        call slope_graup(qr2,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa2,1,1,1,km)
+        do k = 1, km
+          tmp(k) = max((qr(k)+qr2(k)), 1.E-15)
+          IF ( tmp(k) .gt. 1.e-15 ) THEN
+            wa(k) = (wa(k)*qr(k) + wa2(k)*qr2(k))/tmp(k)
+          ELSE
+            wa(k) = 0.
+          ENDIF
+        enddo
+        if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km))
+        do k=1,km
+!#ifdef DEBUG
+!        print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k), &amp;
+!           ww(k),wa(k)
+!#endif
+! mean wind is average of departure and new arrival winds
+          ww(k) = 0.5* ( wd(k)+wa(k) )
+        enddo
+        was(:) = wa(:)
+        n=n+1
+        go to 100
+      endif
+      ist_loop : do ist = 1, 2
+      if (ist.eq.2) then
+       qa(:) = qa2(:)
+      endif
+!
+      precip(i) = 0.
+!
+! estimate values at arrival cell interface with monotone
+      do k=2,km
+        dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k))
+        dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k))
+        if( dip*dim.le.0.0 ) then
+          qmi(k)=qa(k)
+          qpi(k)=qa(k)
+        else
+          qpi(k)=qa(k)+0.5*(dip+dim)*dza(k)
+          qmi(k)=2.0*qa(k)-qpi(k)
+          if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then
+            qpi(k) = qa(k)
+            qmi(k) = qa(k)
+          endif
+        endif
+      enddo
+      qpi(1)=qa(1)
+      qmi(1)=qa(1)
+      qmi(km+1)=qa(km+1)
+      qpi(km+1)=qa(km+1)
+!
+! interpolation to regular point
+      qn = 0.0
+      kb=1
+      kt=1
+      intp : do k=1,km
+             kb=max(kb-1,1)
+             kt=max(kt-1,1)
+! find kb and kt
+             if( zi(k).ge.za(km+1) ) then
+               exit intp
+             else
+               find_kb : do kk=kb,km
+                         if( zi(k).le.za(kk+1) ) then
+                           kb = kk
+                           exit find_kb
+                         else
+                           cycle find_kb
+                         endif
+               enddo find_kb
+               find_kt : do kk=kt,km
+                         if( zi(k+1).le.za(kk) ) then
+                           kt = kk
+                           exit find_kt
+                         else
+                           cycle find_kt
+                         endif
+               enddo find_kt
+               kt = kt - 1
+! compute q with piecewise constant method
+               if( kt.eq.kb ) then
+                 tl=(zi(k)-za(kb))/dza(kb)
+                 th=(zi(k+1)-za(kb))/dza(kb)
+                 tl2=tl*tl
+                 th2=th*th
+                 qqd=0.5*(qpi(kb)-qmi(kb))
+                 qqh=qqd*th2+qmi(kb)*th
+                 qql=qqd*tl2+qmi(kb)*tl
+                 qn(k) = (qqh-qql)/(th-tl)
+               else if( kt.gt.kb ) then
+                 tl=(zi(k)-za(kb))/dza(kb)
+                 tl2=tl*tl
+                 qqd=0.5*(qpi(kb)-qmi(kb))
+                 qql=qqd*tl2+qmi(kb)*tl
+                 dql = qa(kb)-qql
+                 zsum  = (1.-tl)*dza(kb)
+                 qsum  = dql*dza(kb)
+                 if( kt-kb.gt.1 ) then
+                 do m=kb+1,kt-1
+                   zsum = zsum + dza(m)
+                   qsum = qsum + qa(m) * dza(m)
+                 enddo
+                 endif
+                 th=(zi(k+1)-za(kt))/dza(kt)
+                 th2=th*th
+                 qqd=0.5*(qpi(kt)-qmi(kt))
+                 dqh=qqd*th2+qmi(kt)*th
+                 zsum  = zsum + th*dza(kt)
+                 qsum  = qsum + dqh*dza(kt)
+                 qn(k) = qsum/zsum
+               endif
+               cycle intp
+             endif
+!
+       enddo intp
+!
+! rain out
+      sum_precip: do k=1,km
+                    if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then
+                      precip(i) = precip(i) + qa(k)*dza(k)
+                      cycle sum_precip
+                    else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then
+                      precip(i) = precip(i) + qa(k)*(0.0-za(k))
+                      exit sum_precip
+                    endif
+                    exit sum_precip
+      enddo sum_precip
+!
+! replace the new values
+      if(ist.eq.1) then
+        rql(i,:) = qn(:)
+        precip1(i) = precip(i)
+      else
+        rql2(i,:) = qn(:)
+        precip2(i) = precip(i)
+      endif
+      enddo ist_loop
+!
+! ----------------------------------
+      enddo i_loop
+!
+  END SUBROUTINE nislfv_rain_plm6
+END MODULE module_mp_wsm6

</font>
</pre>