<p><b>laura@ucar.edu</b> 2011-01-04 10:13:04 -0700 (Tue, 04 Jan 2011)</p><p>removed because it contained a major BUG in the production of graupel from and rain and snow collisions (refer to wrfhelp e-mail of 12-14-2010)<br>
</p><hr noshade><pre><font color="gray">Deleted: branches/atmos_physics/src/core_physics/physics_wrf/module_mp_thompson.F
===================================================================
--- branches/atmos_physics/src/core_physics/physics_wrf/module_mp_thompson.F        2011-01-04 17:08:04 UTC (rev 670)
+++ branches/atmos_physics/src/core_physics/physics_wrf/module_mp_thompson.F        2011-01-04 17:13:04 UTC (rev 671)
@@ -1,3653 +0,0 @@
-!+---+-----------------------------------------------------------------+
-!.. This subroutine computes the moisture tendencies of water vapor,
-!.. cloud droplets, rain, cloud ice (pristine), snow, and graupel.
-!.. Prior to WRFv2.2 this code was based on Reisner et al (1998), but
-!.. few of those pieces remain.  A complete description is now found in
-!.. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008:
-!.. Explicit Forecasts of winter precipitation using an improved bulk
-!.. microphysics scheme. Part II: Implementation of a new snow
-!.. parameterization.  Mon. Wea. Rev., 136, 5095-5115.
-!.. Prior to WRFv3.1, this code was single-moment rain prediction as
-!.. described in the reference above, but in v3.1 and higher, the
-!.. scheme is two-moment rain (predicted rain number concentration).
-!..
-!.. Most importantly, users may wish to modify the prescribed number of
-!.. cloud droplets (Nt_c; see guidelines mentioned below).  Otherwise,
-!.. users may alter the rain and graupel size distribution parameters
-!.. to use exponential (Marshal-Palmer) or generalized gamma shape.
-!.. The snow field assumes a combination of two gamma functions (from
-!.. Field et al. 2005) and would require significant modifications
-!.. throughout the entire code to alter its shape as well as accretion
-!.. rates.  Users may also alter the constants used for density of rain,
-!.. graupel, ice, and snow, but the latter is not constant when using
-!.. Paul Field's snow distribution and moments methods.  Other values
-!.. users can modify include the constants for mass and/or velocity
-!.. power law relations and assumed capacitances used in deposition/
-!.. sublimation/evaporation/melting.
-!.. Remaining values should probably be left alone.
-!..
-!..Author: Greg Thompson, NCAR-RAL, gthompsn@ucar.edu, 303-497-2805
-!..Last modified: 09 Nov 2009
-!+---+-----------------------------------------------------------------+
-!wrft:model_layer:physics
-!+---+-----------------------------------------------------------------+
-!
-      MODULE module_mp_thompson
-!     USE module_wrf_error
-!     USE module_utility, ONLY: WRFU_Clock, WRFU_Alarm
-!     USE module_domain, ONLY : HISTORY_ALARM, Is_alarm_tstep
-
-      IMPLICIT NONE
-
-!LDF begin (05-13-2010): Added the capabilities to read pre-calculated
-!look-up tables to speed up initialization.
-      LOGICAL, PRIVATE:: iiwarm
-      LOGICAL, PRIVATE:: l_qr_acr_qg
-      LOGICAL, PRIVATE:: l_qr_acr_qs
-      LOGICAL, PRIVATE:: l_qi_aut_qs
-      LOGICAL, PRIVATE:: l_freezeH2O
-!LDF end.
-!     LOGICAL, PARAMETER, PRIVATE:: iiwarm = .false.
-      INTEGER, PARAMETER, PRIVATE:: IFDRY = 0
-      REAL, PARAMETER, PRIVATE:: T_0 = 273.15
-      REAL, PARAMETER, PRIVATE:: PI = 3.1415926536
-
-!..Densities of rain, snow, graupel, and cloud ice.
-      REAL, PARAMETER, PRIVATE:: rho_w = 1000.0
-      REAL, PARAMETER, PRIVATE:: rho_s = 100.0
-      REAL, PARAMETER, PRIVATE:: rho_g = 400.0
-      REAL, PARAMETER, PRIVATE:: rho_i = 890.0
-
-!..Prescribed number of cloud droplets.  Set according to known data or
-!.. roughly 100 per cc (100.E6 m^-3) for Maritime cases and
-!.. 300 per cc (300.E6 m^-3) for Continental.  Gamma shape parameter,
-!.. mu_c, calculated based on Nt_c is important in autoconversion
-!.. scheme.
-      REAL, PARAMETER, PRIVATE:: Nt_c = 100.E6
-
-!..Generalized gamma distributions for rain, graupel and cloud ice.
-!.. N(D) = N_0 * D**mu * exp(-lamda*D);  mu=0 is exponential.
-      REAL, PARAMETER, PRIVATE:: mu_r = 0.0
-      REAL, PARAMETER, PRIVATE:: mu_g = 0.0
-      REAL, PARAMETER, PRIVATE:: mu_i = 0.0
-      REAL, PRIVATE:: mu_c
-
-!..Sum of two gamma distrib for snow (Field et al. 2005).
-!.. N(D) = M2**4/M3**3 * [Kap0*exp(-M2*Lam0*D/M3)
-!..    + Kap1*(M2/M3)**mu_s * D**mu_s * exp(-M2*Lam1*D/M3)]
-!.. M2 and M3 are the (bm_s)th and (bm_s+1)th moments respectively
-!.. calculated as function of ice water content and temperature.
-      REAL, PARAMETER, PRIVATE:: mu_s = 0.6357
-      REAL, PARAMETER, PRIVATE:: Kap0 = 490.6
-      REAL, PARAMETER, PRIVATE:: Kap1 = 17.46
-      REAL, PARAMETER, PRIVATE:: Lam0 = 20.78
-      REAL, PARAMETER, PRIVATE:: Lam1 = 3.29
-
-!..Y-intercept parameter for graupel is not constant and depends on
-!.. mixing ratio.  Also, when mu_g is non-zero, these become equiv
-!.. y-intercept for an exponential distrib and proper values are
-!.. computed based on same mixing ratio and total number concentration.
-      REAL, PARAMETER, PRIVATE:: gonv_min = 1.E4
-      REAL, PARAMETER, PRIVATE:: gonv_max = 3.E6
-
-!..Mass power law relations:  mass = am*D**bm
-!.. Snow from Field et al. (2005), others assume spherical form.
-      REAL, PARAMETER, PRIVATE:: am_r = PI*rho_w/6.0
-      REAL, PARAMETER, PRIVATE:: bm_r = 3.0
-      REAL, PARAMETER, PRIVATE:: am_s = 0.069
-      REAL, PARAMETER, PRIVATE:: bm_s = 2.0
-      REAL, PARAMETER, PRIVATE:: am_g = PI*rho_g/6.0
-      REAL, PARAMETER, PRIVATE:: bm_g = 3.0
-      REAL, PARAMETER, PRIVATE:: am_i = PI*rho_i/6.0
-      REAL, PARAMETER, PRIVATE:: bm_i = 3.0
-
-!..Fallspeed power laws relations:  v = (av*D**bv)*exp(-fv*D)
-!.. Rain from Ferrier (1994), ice, snow, and graupel from
-!.. Thompson et al (2008). Coefficient fv is zero for graupel/ice.
-      REAL, PARAMETER, PRIVATE:: av_r = 4854.0
-      REAL, PARAMETER, PRIVATE:: bv_r = 1.0
-      REAL, PARAMETER, PRIVATE:: fv_r = 195.0
-      REAL, PARAMETER, PRIVATE:: av_s = 40.0
-      REAL, PARAMETER, PRIVATE:: bv_s = 0.55
-      REAL, PARAMETER, PRIVATE:: fv_s = 125.0
-      REAL, PARAMETER, PRIVATE:: av_g = 442.0
-      REAL, PARAMETER, PRIVATE:: bv_g = 0.89
-      REAL, PARAMETER, PRIVATE:: av_i = 1847.5
-      REAL, PARAMETER, PRIVATE:: bv_i = 1.0
-
-!..Capacitance of sphere and plates/aggregates: D**3, D**2
-      REAL, PARAMETER, PRIVATE:: C_cube = 0.5
-      REAL, PARAMETER, PRIVATE:: C_sqrd = 0.3
-
-!..Collection efficiencies.  Rain/snow/graupel collection of cloud
-!.. droplets use variables (Ef_rw, Ef_sw, Ef_gw respectively) and
-!.. get computed elsewhere because they are dependent on stokes
-!.. number.
-      REAL, PARAMETER, PRIVATE:: Ef_si = 0.05
-      REAL, PARAMETER, PRIVATE:: Ef_rs = 0.95
-      REAL, PARAMETER, PRIVATE:: Ef_rg = 0.75
-      REAL, PARAMETER, PRIVATE:: Ef_ri = 0.95
-
-!..Minimum microphys values
-!.. R1 value, 1.E-12, cannot be set lower because of numerical
-!.. problems with Paul Field's moments and should not be set larger
-!.. because of truncation problems in snow/ice growth.
-      REAL, PARAMETER, PRIVATE:: R1 = 1.E-12
-      REAL, PARAMETER, PRIVATE:: R2 = 1.E-8
-      REAL, PARAMETER, PRIVATE:: eps = 1.E-29
-
-!..Constants in Cooper curve relation for cloud ice number.
-      REAL, PARAMETER, PRIVATE:: TNO = 5.0
-      REAL, PARAMETER, PRIVATE:: ATO = 0.304
-
-!..Rho_not used in fallspeed relations (rho_not/rho)**.5 adjustment.
-      REAL, PARAMETER, PRIVATE:: rho_not = 101325.0/(287.05*298.0)
-
-!..Schmidt number
-      REAL, PARAMETER, PRIVATE:: Sc = 0.632
-      REAL, PRIVATE:: Sc3
-
-!..Homogeneous freezing temperature
-      REAL, PARAMETER, PRIVATE:: HGFR = 235.16
-
-!..Water vapor and air gas constants at constant pressure
-      REAL, PARAMETER, PRIVATE:: Rv = 461.5
-      REAL, PARAMETER, PRIVATE:: oRv = 1./Rv
-      REAL, PARAMETER, PRIVATE:: R = 287.04
-      REAL, PARAMETER, PRIVATE:: Cp = 1004.0
-
-!..Enthalpy of sublimation, vaporization, and fusion at 0C.
-      REAL, PARAMETER, PRIVATE:: lsub = 2.834E6
-      REAL, PARAMETER, PRIVATE:: lvap0 = 2.5E6
-      REAL, PARAMETER, PRIVATE:: lfus = lsub - lvap0
-      REAL, PARAMETER, PRIVATE:: olfus = 1./lfus
-
-!..Ice initiates with this mass (kg), corresponding diameter calc.
-!..Min diameters and mass of cloud, rain, snow, and graupel (m, kg).
-      REAL, PARAMETER, PRIVATE:: xm0i = 1.E-12
-      REAL, PARAMETER, PRIVATE:: D0c = 1.E-6
-      REAL, PARAMETER, PRIVATE:: D0r = 50.E-6
-      REAL, PARAMETER, PRIVATE:: D0s = 200.E-6
-      REAL, PARAMETER, PRIVATE:: D0g = 250.E-6
-      REAL, PRIVATE:: D0i, xm0s, xm0g
-
-!..Lookup table dimensions
-      INTEGER, PARAMETER, PRIVATE:: nbins = 100
-      INTEGER, PARAMETER, PRIVATE:: nbc = nbins
-      INTEGER, PARAMETER, PRIVATE:: nbi = nbins
-      INTEGER, PARAMETER, PRIVATE:: nbr = nbins
-      INTEGER, PARAMETER, PRIVATE:: nbs = nbins
-      INTEGER, PARAMETER, PRIVATE:: nbg = nbins
-      INTEGER, PARAMETER, PRIVATE:: ntb_c = 37
-      INTEGER, PARAMETER, PRIVATE:: ntb_i = 64
-      INTEGER, PARAMETER, PRIVATE:: ntb_r = 37
-      INTEGER, PARAMETER, PRIVATE:: ntb_s = 28
-      INTEGER, PARAMETER, PRIVATE:: ntb_g = 28
-      INTEGER, PARAMETER, PRIVATE:: ntb_g1 = 28
-      INTEGER, PARAMETER, PRIVATE:: ntb_r1 = 37
-      INTEGER, PARAMETER, PRIVATE:: ntb_i1 = 55
-      INTEGER, PARAMETER, PRIVATE:: ntb_t = 9
-      INTEGER, PRIVATE:: nic2, nii2, nii3, nir2, nir3, nis2, nig2, nig3
-
-      DOUBLE PRECISION, DIMENSION(nbins+1):: xDx
-      DOUBLE PRECISION, DIMENSION(nbc):: Dc, dtc
-      DOUBLE PRECISION, DIMENSION(nbi):: Di, dti
-      DOUBLE PRECISION, DIMENSION(nbr):: Dr, dtr
-      DOUBLE PRECISION, DIMENSION(nbs):: Ds, dts
-      DOUBLE PRECISION, DIMENSION(nbg):: Dg, dtg
-
-!..Lookup tables for cloud water content (kg/m**3).
-      REAL, DIMENSION(ntb_c), PARAMETER, PRIVATE:: &amp;
-      r_c = (/1.e-6,2.e-6,3.e-6,4.e-6,5.e-6,6.e-6,7.e-6,8.e-6,9.e-6, &amp;
-              1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, &amp;
-              1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, &amp;
-              1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, &amp;
-              1.e-2/)
-
-!..Lookup tables for cloud ice content (kg/m**3).
-      REAL, DIMENSION(ntb_i), PARAMETER, PRIVATE:: &amp;
-      r_i = (/1.e-10,2.e-10,3.e-10,4.e-10, &amp;
-              5.e-10,6.e-10,7.e-10,8.e-10,9.e-10, &amp;
-              1.e-9,2.e-9,3.e-9,4.e-9,5.e-9,6.e-9,7.e-9,8.e-9,9.e-9, &amp;
-              1.e-8,2.e-8,3.e-8,4.e-8,5.e-8,6.e-8,7.e-8,8.e-8,9.e-8, &amp;
-              1.e-7,2.e-7,3.e-7,4.e-7,5.e-7,6.e-7,7.e-7,8.e-7,9.e-7, &amp;
-              1.e-6,2.e-6,3.e-6,4.e-6,5.e-6,6.e-6,7.e-6,8.e-6,9.e-6, &amp;
-              1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, &amp;
-              1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, &amp;
-              1.e-3/)
-
-!..Lookup tables for rain content (kg/m**3).
-      REAL, DIMENSION(ntb_r), PARAMETER, PRIVATE:: &amp;
-      r_r = (/1.e-6,2.e-6,3.e-6,4.e-6,5.e-6,6.e-6,7.e-6,8.e-6,9.e-6, &amp;
-              1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, &amp;
-              1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, &amp;
-              1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, &amp;
-              1.e-2/)
-
-!..Lookup tables for graupel content (kg/m**3).
-      REAL, DIMENSION(ntb_g), PARAMETER, PRIVATE:: &amp;
-      r_g = (/1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, &amp;
-              1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, &amp;
-              1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, &amp;
-              1.e-2/)
-
-!..Lookup tables for snow content (kg/m**3).
-      REAL, DIMENSION(ntb_s), PARAMETER, PRIVATE:: &amp;
-      r_s = (/1.e-5,2.e-5,3.e-5,4.e-5,5.e-5,6.e-5,7.e-5,8.e-5,9.e-5, &amp;
-              1.e-4,2.e-4,3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4, &amp;
-              1.e-3,2.e-3,3.e-3,4.e-3,5.e-3,6.e-3,7.e-3,8.e-3,9.e-3, &amp;
-              1.e-2/)
-
-!..Lookup tables for rain y-intercept parameter (/m**4).
-      REAL, DIMENSION(ntb_r1), PARAMETER, PRIVATE:: &amp;
-      N0r_exp = (/1.e6,2.e6,3.e6,4.e6,5.e6,6.e6,7.e6,8.e6,9.e6, &amp;
-                  1.e7,2.e7,3.e7,4.e7,5.e7,6.e7,7.e7,8.e7,9.e7, &amp;
-                  1.e8,2.e8,3.e8,4.e8,5.e8,6.e8,7.e8,8.e8,9.e8, &amp;
-                  1.e9,2.e9,3.e9,4.e9,5.e9,6.e9,7.e9,8.e9,9.e9, &amp;
-                  1.e10/)
-
-!..Lookup tables for graupel y-intercept parameter (/m**4).
-      REAL, DIMENSION(ntb_g1), PARAMETER, PRIVATE:: &amp;
-      N0g_exp = (/1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4, &amp;
-                  1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5, &amp;
-                  1.e6,2.e6,3.e6,4.e6,5.e6,6.e6,7.e6,8.e6,9.e6, &amp;
-                  1.e7/)
-
-!..Lookup tables for ice number concentration (/m**3).
-      REAL, DIMENSION(ntb_i1), PARAMETER, PRIVATE:: &amp;
-      Nt_i = (/1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0, &amp;
-               1.e1,2.e1,3.e1,4.e1,5.e1,6.e1,7.e1,8.e1,9.e1, &amp;
-               1.e2,2.e2,3.e2,4.e2,5.e2,6.e2,7.e2,8.e2,9.e2, &amp;
-               1.e3,2.e3,3.e3,4.e3,5.e3,6.e3,7.e3,8.e3,9.e3, &amp;
-               1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4, &amp;
-               1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5, &amp;
-               1.e6/)
-
-!..For snow moments conversions (from Field et al. 2005)
-      REAL, DIMENSION(10), PARAMETER, PRIVATE:: &amp;
-      sa = (/ 5.065339, -0.062659, -3.032362, 0.029469, -0.000285, &amp;
-              0.31255,   0.000204,  0.003199, 0.0,      -0.015952/)
-      REAL, DIMENSION(10), PARAMETER, PRIVATE:: &amp;
-      sb = (/ 0.476221, -0.015896,  0.165977, 0.007468, -0.000141, &amp;
-              0.060366,  0.000079,  0.000594, 0.0,      -0.003577/)
-
-!..Temperatures (5 C interval 0 to -40) used in lookup tables.
-      REAL, DIMENSION(ntb_t), PARAMETER, PRIVATE:: &amp;
-      Tc = (/-0.01, -5., -10., -15., -20., -25., -30., -35., -40./)
-
-!..Lookup tables for various accretion/collection terms.
-!.. ntb_x refers to the number of elements for rain, snow, graupel,
-!.. and temperature array indices.  Variables beginning with t-p/c/m/n
-!.. represent lookup tables.  Save compile-time memory by making
-!.. allocatable (2009Jun12, J. Michalakes).
-      INTEGER, PARAMETER, PRIVATE:: R8SIZE = 8
-      REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:,:)::             &amp;
-                tcg_racg, tmr_racg, tcr_gacr, tmg_gacr,                 &amp;
-                tnr_racg, tnr_gacr
-      REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:,:)::             &amp;
-                tcs_racs1, tmr_racs1, tcs_racs2, tmr_racs2,             &amp;
-                tcr_sacr1, tms_sacr1, tcr_sacr2, tms_sacr2,             &amp;
-                tnr_racs1, tnr_racs2, tnr_sacr1, tnr_sacr2
-      REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:)::                 &amp;
-                tpi_qcfz, tni_qcfz
-      REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:)::               &amp;
-                tpi_qrfz, tpg_qrfz, tni_qrfz, tnr_qrfz
-      REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:)::                 &amp;
-                tps_iaus, tni_iaus, tpi_ide
-      REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:):: t_Efrw
-      REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:):: t_Efsw
-      REAL (KIND=R8SIZE), ALLOCATABLE, DIMENSION(:,:,:):: tnr_rev
-
-!..Variables holding a bunch of exponents and gamma values (cloud water,
-!.. cloud ice, rain, snow, then graupel).
-      REAL, DIMENSION(3), PRIVATE:: cce, ccg
-      REAL, PRIVATE::  ocg1, ocg2
-      REAL, DIMENSION(6), PRIVATE:: cie, cig
-      REAL, PRIVATE:: oig1, oig2, obmi
-      REAL, DIMENSION(13), PRIVATE:: cre, crg
-      REAL, PRIVATE:: ore1, org1, org2, org3, obmr
-      REAL, DIMENSION(18), PRIVATE:: cse, csg
-      REAL, PRIVATE:: oams, obms, ocms
-      REAL, DIMENSION(12), PRIVATE:: cge, cgg
-      REAL, PRIVATE:: oge1, ogg1, ogg2, ogg3, oamg, obmg, ocmg
-
-!..Declaration of precomputed constants in various rate eqns.
-      REAL:: t1_qr_qc, t1_qr_qi, t2_qr_qi, t1_qg_qc, t1_qs_qc, t1_qs_qi
-      REAL:: t1_qr_ev, t2_qr_ev
-      REAL:: t1_qs_sd, t2_qs_sd, t1_qg_sd, t2_qg_sd
-      REAL:: t1_qs_me, t2_qs_me, t1_qg_me, t2_qg_me
-
-      CHARACTER*256:: mp_debug
-
-!+---+
-!+---+-----------------------------------------------------------------+
-!..END DECLARATIONS
-!+---+-----------------------------------------------------------------+
-!+---+
-!ctrlL
-
-      CONTAINS
-
-      SUBROUTINE thompson_init
-
-      IMPLICIT NONE
-
-      INTEGER:: i, j, k, m, n
-      LOGICAL:: micro_init
-
-!..Allocate space for lookup tables (J. Michalakes 2009Jun08).
-      micro_init = .FALSE.
-
-      if (.NOT. ALLOCATED(tcg_racg) ) then
-         ALLOCATE(tcg_racg(ntb_g1,ntb_g,ntb_r1,ntb_r))
-         micro_init = .TRUE.
-      endif
-
-      if (.NOT. ALLOCATED(tmr_racg)) ALLOCATE(tmr_racg(ntb_g1,ntb_g,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tcr_gacr)) ALLOCATE(tcr_gacr(ntb_g1,ntb_g,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tmg_gacr)) ALLOCATE(tmg_gacr(ntb_g1,ntb_g,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tnr_racg)) ALLOCATE(tnr_racg(ntb_g1,ntb_g,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tnr_gacr)) ALLOCATE(tnr_gacr(ntb_g1,ntb_g,ntb_r1,ntb_r))
-
-      if (.NOT. ALLOCATED(tcs_racs1)) ALLOCATE(tcs_racs1(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tmr_racs1)) ALLOCATE(tmr_racs1(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tcs_racs2)) ALLOCATE(tcs_racs2(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tmr_racs2)) ALLOCATE(tmr_racs2(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tcr_sacr1)) ALLOCATE(tcr_sacr1(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tms_sacr1)) ALLOCATE(tms_sacr1(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tcr_sacr2)) ALLOCATE(tcr_sacr2(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tms_sacr2)) ALLOCATE(tms_sacr2(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tnr_racs1)) ALLOCATE(tnr_racs1(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tnr_racs2)) ALLOCATE(tnr_racs2(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tnr_sacr1)) ALLOCATE(tnr_sacr1(ntb_s,ntb_t,ntb_r1,ntb_r))
-      if (.NOT. ALLOCATED(tnr_sacr2)) ALLOCATE(tnr_sacr2(ntb_s,ntb_t,ntb_r1,ntb_r))
-
-      if (.NOT. ALLOCATED(tpi_qcfz)) ALLOCATE(tpi_qcfz(ntb_c,45))
-      if (.NOT. ALLOCATED(tni_qcfz)) ALLOCATE(tni_qcfz(ntb_c,45))
-
-      if (.NOT. ALLOCATED(tpi_qrfz)) ALLOCATE(tpi_qrfz(ntb_r,ntb_r1,45))
-      if (.NOT. ALLOCATED(tpg_qrfz)) ALLOCATE(tpg_qrfz(ntb_r,ntb_r1,45))
-      if (.NOT. ALLOCATED(tni_qrfz)) ALLOCATE(tni_qrfz(ntb_r,ntb_r1,45))
-      if (.NOT. ALLOCATED(tnr_qrfz)) ALLOCATE(tnr_qrfz(ntb_r,ntb_r1,45))
-
-      if (.NOT. ALLOCATED(tps_iaus)) ALLOCATE(tps_iaus(ntb_i,ntb_i1))
-      if (.NOT. ALLOCATED(tni_iaus)) ALLOCATE(tni_iaus(ntb_i,ntb_i1))
-      if (.NOT. ALLOCATED(tpi_ide)) ALLOCATE(tpi_ide(ntb_i,ntb_i1))
-
-      if (.NOT. ALLOCATED(t_Efrw)) ALLOCATE(t_Efrw(nbr,nbc))
-      if (.NOT. ALLOCATED(t_Efsw)) ALLOCATE(t_Efsw(nbs,nbc))
-
-      if (.NOT. ALLOCATED(tnr_rev)) ALLOCATE(tnr_rev(nbr, ntb_r1, ntb_r))
-
-      if (micro_init) then
-
-!..From Martin et al. (1994), assign gamma shape parameter mu for cloud
-!.. drops according to general dispersion characteristics (disp=~0.25
-!.. for Maritime and 0.45 for Continental).
-!.. disp=SQRT((mu+2)/(mu+1) - 1) so mu varies from 15 for Maritime
-!.. to 2 for really dirty air.
-      mu_c = MIN(15., (1000.E6/Nt_c + 2.))
-
-!..Schmidt number to one-third used numerous times.
-      Sc3 = Sc**(1./3.)
-
-!..Compute min ice diam from mass, min snow/graupel mass from diam.
-      D0i = (xm0i/am_i)**(1./bm_i)
-      xm0s = am_s * D0s**bm_s
-      xm0g = am_g * D0g**bm_g
-
-!..These constants various exponents and gamma() assoc with cloud,
-!.. rain, snow, and graupel.
-      cce(1) = mu_c + 1.
-      cce(2) = bm_r + mu_c + 1.
-      cce(3) = bm_r + mu_c + 4.
-      ccg(1) = WGAMMA(cce(1))
-      ccg(2) = WGAMMA(cce(2))
-      ccg(3) = WGAMMA(cce(3))
-      ocg1 = 1./ccg(1)
-      ocg2 = 1./ccg(2)
-
-      cie(1) = mu_i + 1.
-      cie(2) = bm_i + mu_i + 1.
-      cie(3) = bm_i + mu_i + bv_i + 1.
-      cie(4) = mu_i + bv_i + 1.
-      cie(5) = mu_i + 2.
-      cie(6) = bm_i + bv_i
-      cig(1) = WGAMMA(cie(1))
-      cig(2) = WGAMMA(cie(2))
-      cig(3) = WGAMMA(cie(3))
-      cig(4) = WGAMMA(cie(4))
-      cig(5) = WGAMMA(cie(5))
-      cig(6) = WGAMMA(cie(6))
-      oig1 = 1./cig(1)
-      oig2 = 1./cig(2)
-      obmi = 1./bm_i
-
-      cre(1) = bm_r + 1.
-      cre(2) = mu_r + 1.
-      cre(3) = bm_r + mu_r + 1.
-      cre(4) = bm_r*2. + mu_r + 1.
-      cre(5) = mu_r + bv_r + 1.
-      cre(6) = bm_r + mu_r + bv_r + 1.
-      cre(7) = bm_r*0.5 + mu_r + bv_r + 1.
-      cre(8) = bm_r + mu_r + bv_r + 3.
-      cre(9) = mu_r + bv_r + 3.
-      cre(10) = mu_r + 2.
-      cre(11) = 0.5*(bv_r + 5. + 2.*mu_r)
-      cre(12) = bm_r*0.5 + mu_r + 1.
-      cre(13) = bm_r*2. + mu_r + bv_r + 1.
-      do n = 1, 13
-         crg(n) = WGAMMA(cre(n))
-      enddo
-      obmr = 1./bm_r
-      ore1 = 1./cre(1)
-      org1 = 1./crg(1)
-      org2 = 1./crg(2)
-      org3 = 1./crg(3)
-
-      cse(1) = bm_s + 1.
-      cse(2) = bm_s + 2.
-      cse(3) = bm_s*2.
-      cse(4) = bm_s + bv_s + 1.
-      cse(5) = bm_s*2. + bv_s + 1.
-      cse(6) = bm_s*2. + 1.
-      cse(7) = bm_s + mu_s + 1.
-      cse(8) = bm_s + mu_s + 2.
-      cse(9) = bm_s + mu_s + 3.
-      cse(10) = bm_s + mu_s + bv_s + 1.
-      cse(11) = bm_s*2. + mu_s + bv_s + 2.
-      cse(12) = bm_s*2. + mu_s + 1.
-      cse(13) = bv_s + 2.
-      cse(14) = bm_s + bv_s
-      cse(15) = mu_s + 1.
-      cse(16) = 1.0 + (1.0 + bv_s)/2.
-      cse(17) = cse(16) + mu_s + 1.
-      cse(18) = bv_s + mu_s + 3.
-      do n = 1, 18
-         csg(n) = WGAMMA(cse(n))
-      enddo
-      oams = 1./am_s
-      obms = 1./bm_s
-      ocms = oams**obms
-
-      cge(1) = bm_g + 1.
-      cge(2) = mu_g + 1.
-      cge(3) = bm_g + mu_g + 1.
-      cge(4) = bm_g*2. + mu_g + 1.
-      cge(5) = bm_g*2. + mu_g + bv_g + 1.
-      cge(6) = bm_g + mu_g + bv_g + 1.
-      cge(7) = bm_g + mu_g + bv_g + 2.
-      cge(8) = bm_g + mu_g + bv_g + 3.
-      cge(9) = mu_g + bv_g + 3.
-      cge(10) = mu_g + 2.
-      cge(11) = 0.5*(bv_g + 5. + 2.*mu_g)
-      cge(12) = 0.5*(bv_g + 5.) + mu_g
-      do n = 1, 12
-         cgg(n) = WGAMMA(cge(n))
-      enddo
-      oamg = 1./am_g
-      obmg = 1./bm_g
-      ocmg = oamg**obmg
-      oge1 = 1./cge(1)
-      ogg1 = 1./cgg(1)
-      ogg2 = 1./cgg(2)
-      ogg3 = 1./cgg(3)
-
-!+---+-----------------------------------------------------------------+
-!..Simplify various rate eqns the best we can now.
-!+---+-----------------------------------------------------------------+
-
-!..Rain collecting cloud water and cloud ice
-      t1_qr_qc = PI*.25*av_r * crg(9)
-      t1_qr_qi = PI*.25*av_r * crg(9)
-      t2_qr_qi = PI*.25*am_r*av_r * crg(8)
-
-!..Graupel collecting cloud water
-      t1_qg_qc = PI*.25*av_g * cgg(9)
-
-!..Snow collecting cloud water
-      t1_qs_qc = PI*.25*av_s
-
-!..Snow collecting cloud ice
-      t1_qs_qi = PI*.25*av_s
-
-!..Evaporation of rain; ignore depositional growth of rain.
-      t1_qr_ev = 0.78 * crg(10)
-      t2_qr_ev = 0.308*Sc3*SQRT(av_r) * crg(11)
-
-!..Sublimation/depositional growth of snow
-      t1_qs_sd = 0.86
-      t2_qs_sd = 0.28*Sc3*SQRT(av_s)
-
-!..Melting of snow
-      t1_qs_me = PI*4.*C_sqrd*olfus * 0.86
-      t2_qs_me = PI*4.*C_sqrd*olfus * 0.28*Sc3*SQRT(av_s)
-
-!..Sublimation/depositional growth of graupel
-      t1_qg_sd = 0.86 * cgg(10)
-      t2_qg_sd = 0.28*Sc3*SQRT(av_g) * cgg(11)
-
-!..Melting of graupel
-      t1_qg_me = PI*4.*C_cube*olfus * 0.86 * cgg(10)
-      t2_qg_me = PI*4.*C_cube*olfus * 0.28*Sc3*SQRT(av_g) * cgg(11)
-
-!..Constants for helping find lookup table indexes.
-      nic2 = NINT(ALOG10(r_c(1)))
-      nii2 = NINT(ALOG10(r_i(1)))
-      nii3 = NINT(ALOG10(Nt_i(1)))
-      nir2 = NINT(ALOG10(r_r(1)))
-      nir3 = NINT(ALOG10(N0r_exp(1)))
-      nis2 = NINT(ALOG10(r_s(1)))
-      nig2 = NINT(ALOG10(r_g(1)))
-      nig3 = NINT(ALOG10(N0g_exp(1)))
-
-!..Create bins of cloud water (from min diameter up to 100 microns).
-      Dc(1) = D0c*1.0d0
-      dtc(1) = D0c*1.0d0
-      do n = 2, nbc
-         Dc(n) = Dc(n-1) + 1.0D-6
-         dtc(n) = (Dc(n) - Dc(n-1))
-      enddo
-
-!..Create bins of cloud ice (from min diameter up to 5x min snow size).
-      xDx(1) = D0i*1.0d0
-      xDx(nbi+1) = 5.0d0*D0s
-      do n = 2, nbi
-         xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbi) &amp;
-                  *DLOG(xDx(nbi+1)/xDx(1)) +DLOG(xDx(1)))
-      enddo
-      do n = 1, nbi
-         Di(n) = DSQRT(xDx(n)*xDx(n+1))
-         dti(n) = xDx(n+1) - xDx(n)
-      enddo
-
-!..Create bins of rain (from min diameter up to 5 mm).
-      xDx(1) = D0r*1.0d0
-      xDx(nbr+1) = 0.005d0
-      do n = 2, nbr
-         xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbr) &amp;
-                  *DLOG(xDx(nbr+1)/xDx(1)) +DLOG(xDx(1)))
-      enddo
-      do n = 1, nbr
-         Dr(n) = DSQRT(xDx(n)*xDx(n+1))
-         dtr(n) = xDx(n+1) - xDx(n)
-      enddo
-
-!..Create bins of snow (from min diameter up to 2 cm).
-      xDx(1) = D0s*1.0d0
-      xDx(nbs+1) = 0.02d0
-      do n = 2, nbs
-         xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbs) &amp;
-                  *DLOG(xDx(nbs+1)/xDx(1)) +DLOG(xDx(1)))
-      enddo
-      do n = 1, nbs
-         Ds(n) = DSQRT(xDx(n)*xDx(n+1))
-         dts(n) = xDx(n+1) - xDx(n)
-      enddo
-
-!..Create bins of graupel (from min diameter up to 5 cm).
-      xDx(1) = D0g*1.0d0
-      xDx(nbg+1) = 0.05d0
-      do n = 2, nbg
-         xDx(n) = DEXP(DFLOAT(n-1)/DFLOAT(nbg) &amp;
-                  *DLOG(xDx(nbg+1)/xDx(1)) +DLOG(xDx(1)))
-      enddo
-      do n = 1, nbg
-         Dg(n) = DSQRT(xDx(n)*xDx(n+1))
-         dtg(n) = xDx(n+1) - xDx(n)
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Create lookup tables for most costly calculations.
-!+---+-----------------------------------------------------------------+
-
-      do m = 1, ntb_r
-         do k = 1, ntb_r1
-            do j = 1, ntb_g
-               do i = 1, ntb_g1
-                  tcg_racg(i,j,k,m) = 0.0d0
-                  tmr_racg(i,j,k,m) = 0.0d0
-                  tcr_gacr(i,j,k,m) = 0.0d0
-                  tmg_gacr(i,j,k,m) = 0.0d0
-                  tnr_racg(i,j,k,m) = 0.0d0
-                  tnr_gacr(i,j,k,m) = 0.0d0
-               enddo
-            enddo
-         enddo
-      enddo
-
-      do m = 1, ntb_r
-         do k = 1, ntb_r1
-            do j = 1, ntb_t
-               do i = 1, ntb_s
-                  tcs_racs1(i,j,k,m) = 0.0d0
-                  tmr_racs1(i,j,k,m) = 0.0d0
-                  tcs_racs2(i,j,k,m) = 0.0d0
-                  tmr_racs2(i,j,k,m) = 0.0d0
-                  tcr_sacr1(i,j,k,m) = 0.0d0
-                  tms_sacr1(i,j,k,m) = 0.0d0
-                  tcr_sacr2(i,j,k,m) = 0.0d0
-                  tms_sacr2(i,j,k,m) = 0.0d0
-                  tnr_racs1(i,j,k,m) = 0.0d0
-                  tnr_racs2(i,j,k,m) = 0.0d0
-                  tnr_sacr1(i,j,k,m) = 0.0d0
-                  tnr_sacr2(i,j,k,m) = 0.0d0
-               enddo
-            enddo
-         enddo
-      enddo
-
-      do k = 1, 45
-         do j = 1, ntb_r1
-            do i = 1, ntb_r
-               tpi_qrfz(i,j,k) = 0.0d0
-               tni_qrfz(i,j,k) = 0.0d0
-               tpg_qrfz(i,j,k) = 0.0d0
-               tnr_qrfz(i,j,k) = 0.0d0
-            enddo
-         enddo
-         do i = 1, ntb_c
-            tpi_qcfz(i,k) = 0.0d0
-            tni_qcfz(i,k) = 0.0d0
-         enddo
-      enddo
-
-      do j = 1, ntb_i1
-         do i = 1, ntb_i
-            tps_iaus(i,j) = 0.0d0
-            tni_iaus(i,j) = 0.0d0
-            tpi_ide(i,j) = 0.0d0
-         enddo
-      enddo
-
-      do j = 1, nbc
-         do i = 1, nbr
-            t_Efrw(i,j) = 0.0
-         enddo
-         do i = 1, nbs
-            t_Efsw(i,j) = 0.0
-         enddo
-      enddo
-
-      do k = 1, ntb_r
-         do j = 1, ntb_r1
-            do i = 1, nbr
-               tnr_rev(i,j,k) = 0.0d0
-            enddo
-         enddo
-      enddo
-
-!     CALL wrf_debug(150, 'CREATING MICROPHYSICS LOOKUP TABLES ... ')
-!     WRITE (wrf_err_message, '(a, f5.2, a, f5.2, a, f5.2, a, f5.2)') &amp;
-!         ' using: mu_c=',mu_c,' mu_i=',mu_i,' mu_r=',mu_r,' mu_g=',mu_g
-!     CALL wrf_debug(150, wrf_err_message)
-
-!..Collision efficiency between rain/snow and cloud water.
-!     CALL wrf_debug(200, '  creating qc collision eff tables')
-      call table_Efrw
-      call table_Efsw
-
-!..Drop evaporation.
-!     CALL wrf_debug(200, '  creating rain evap table')
-!     call table_dropEvap
-
-!..Initialize various constants for computing radar reflectivity.
-!     call radar_init
-
-!LDF begin (05-13-2010): read pre-calculated look-up tables.
-      iiwarm = .false.
-      l_qr_acr_qg = .false.
-      l_qr_acr_qs = .false.
-      l_qi_aut_qs = .false.
-      l_freezeH2O = .false.
-
-      inquire(file='./LOOKUP_TABLES/table_qr_acr_qg.dat',exist=l_qr_acr_qg)
-      inquire(file='./LOOKUP_TABLES/table_qr_acr_qs.dat',exist=l_qr_acr_qs)
-      inquire(file='./LOOKUP_TABLES/table_qi_aut_qs.dat',exist=l_qi_aut_qs)
-      inquire(file='./LOOKUP_TABLES/table_freezeH2O.dat',exist=l_freezeH2O)
-
-      IF(l_qr_acr_qg .AND. l_qr_acr_qs .AND. l_qi_aut_qs .AND. &amp;
-         l_freezeH2O) iiwarm = .true.

-      if(iiwarm) then
-         write(0,*) '--- BEGIN READ PRE-CALCULATED LOOK-UP TABLES'
-!..Rain collecting graupel &amp; graupel collecting rain.
-         open(unit=11,file='./LOOKUP_TABLES/table_qr_acr_qg.dat', &amp;
-              form='unformatted',status='old',action='read')
-         read(11) tcg_racg
-         read(11) tmr_racg
-         read(11) tcr_gacr
-         read(11) tmg_gacr
-         read(11) tnr_racg
-         read(11) tnr_gacr
-         close(unit=11)
-
-!..Rain collecting snow &amp; snow collecting rain.
-         open(unit=11,file='./LOOKUP_TABLES/table_qr_acr_qs.dat', &amp;
-              form='unformatted',status='old',action='read')
-         read(11) tcs_racs1
-         read(11) tmr_racs1
-         read(11) tcs_racs2
-         read(11) tmr_racs2
-         read(11) tcr_sacr1
-         read(11) tms_sacr1
-         read(11) tcr_sacr2
-         read(11) tms_sacr2
-         read(11) tnr_racs1
-         read(11) tnr_racs2
-         read(11) tnr_sacr1
-         read(11) tnr_sacr2
-         close(unit=11)
-
-!..Cloud water and rain freezing (Bigg, 1953).
-         open(unit=11,file='./LOOKUP_TABLES/table_freezeH2O.dat', &amp;
-              form='unformatted',status='old',action='read')
-         read(11) tpi_qrfz
-         read(11) tni_qrfz
-         read(11) tpg_qrfz
-         read(11) tnr_qrfz
-         read(11) tpi_qcfz
-         read(11) tni_qcfz
-         close(unit=11)
-
-!..Conversion of some ice mass into snow category.
-         open(unit=11,file='./LOOKUP_TABLES/table_qi_aut_qs.dat', &amp;
-              form='unformatted',status='old',action='read')
-         read(11) tpi_ide
-         read(11) tps_iaus
-         read(11) tni_iaus
-         close(unit=11)
-
-         write(0,*) '--- END PRE-CALCULATED LOOK-UP TABLES'
-         iiwarm = .false.
-
-      elseif (.not. iiwarm) then
-
-!..Rain collecting graupel &amp; graupel collecting rain.
-!     CALL wrf_debug(200, '  creating rain collecting graupel table')
-      call qr_acr_qg
-
-!..Rain collecting snow &amp; snow collecting rain.
-!     CALL wrf_debug(200, '  creating rain collecting snow table')
-      call qr_acr_qs
-
-!..Cloud water and rain freezing (Bigg, 1953).
-!     CALL wrf_debug(200, '  creating freezing of water drops table')
-      call freezeH2O
-
-!..Conversion of some ice mass into snow category.
-!     CALL wrf_debug(200, '  creating ice converting to snow table')
-      call qi_aut_qs
-
-      endif
-
-!     CALL wrf_debug(150, ' ... DONE microphysical lookup tables')
-      endif
-
-      END SUBROUTINE thompson_init
-!+---+-----------------------------------------------------------------+
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!..This is a wrapper routine designed to transfer values from 3D to 1D.
-!+---+-----------------------------------------------------------------+
-      SUBROUTINE mp_gt_driver(qv, qc, qr, qi, qs, qg, ni, nr, &amp;
-                              th, pii, p, dz, dt_in, itimestep, &amp;
-                              RAINNC, RAINNCV, &amp;
-                              SNOWNC, SNOWNCV, &amp;
-                              GRAUPELNC, GRAUPELNCV, &amp;
-                              SR, &amp;
-!                             refl_10cm, grid_clock, grid_alarms, &amp;
-                              ids,ide, jds,jde, kds,kde, &amp;             ! domain dims
-                              ims,ime, jms,jme, kms,kme, &amp;             ! memory dims
-                              its,ite, jts,jte, kts,kte)               ! tile dims
-
-      implicit none
-
-!..Subroutine arguments
-      INTEGER, INTENT(IN):: ids,ide, jds,jde, kds,kde, &amp;
-                            ims,ime, jms,jme, kms,kme, &amp;
-                            its,ite, jts,jte, kts,kte
-      REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT):: &amp;
-                          qv, qc, qr, qi, qs, qg, ni, nr, th
-      REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN):: &amp;
-                          pii, p, dz
-      REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT):: &amp;
-                          RAINNC, RAINNCV, SR
-      REAL, DIMENSION(ims:ime, jms:jme), OPTIONAL, INTENT(INOUT)::      &amp;
-                          SNOWNC, SNOWNCV, GRAUPELNC, GRAUPELNCV
-!     REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT)::       &amp;
-!                         refl_10cm
-      REAL, INTENT(IN):: dt_in
-      INTEGER, INTENT(IN):: itimestep
-
-!     TYPE (WRFU_Clock):: grid_clock
-!     TYPE (WRFU_Alarm), POINTER:: grid_alarms(:)
-
-!..Local variables
-      REAL, DIMENSION(kts:kte):: &amp;
-                          qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, &amp;
-                          nr1d, t1d, p1d, dz1d, dBZ
-      REAL, DIMENSION(its:ite, jts:jte):: pcp_ra, pcp_sn, pcp_gr, pcp_ic
-      REAL:: dt, pptrain, pptsnow, pptgraul, pptice
-      REAL:: qc_max, qr_max, qs_max, qi_max, qg_max, ni_max, nr_max
-      INTEGER:: i, j, k
-      INTEGER:: imax_qc,imax_qr,imax_qi,imax_qs,imax_qg,imax_ni,imax_nr
-      INTEGER:: jmax_qc,jmax_qr,jmax_qi,jmax_qs,jmax_qg,jmax_ni,jmax_nr
-      INTEGER:: kmax_qc,kmax_qr,kmax_qi,kmax_qs,kmax_qg,kmax_ni,kmax_nr
-      INTEGER:: i_start, j_start, i_end, j_end
-      LOGICAL:: dBZ_tstep
-
-!+---+
-
-      dBZ_tstep = .false.
-!     if ( Is_alarm_tstep(grid_clock, grid_alarms(HISTORY_ALARM)) ) then
-!        dBZ_tstep = .true.
-!     endif
-
-      i_start = its
-      j_start = jts
-      i_end   = ite
-      j_end   = jte
-!     if ( (ite-its+1).gt.4 .and. (jte-jts+1).lt.4) then
-!        i_start = its + 2
-!        i_end   = ite - 1
-!        j_start = jts
-!        j_end   = jte
-!     elseif ( (ite-its+1).lt.4 .and. (jte-jts+1).gt.4) then
-!        i_start = its
-!        i_end   = ite
-!        j_start = jts + 2
-!        j_end   = jte - 1
-!     endif
-
-      dt = dt_in
-   
-      qc_max = 0.
-      qr_max = 0.
-      qs_max = 0.
-      qi_max = 0.
-      qg_max = 0
-      ni_max = 0.
-      nr_max = 0.
-      imax_qc = 0
-      imax_qr = 0
-      imax_qi = 0
-      imax_qs = 0
-      imax_qg = 0
-      imax_ni = 0
-      imax_nr = 0
-      jmax_qc = 0
-      jmax_qr = 0
-      jmax_qi = 0
-      jmax_qs = 0
-      jmax_qg = 0
-      jmax_ni = 0
-      jmax_nr = 0
-      kmax_qc = 0
-      kmax_qr = 0
-      kmax_qi = 0
-      kmax_qs = 0
-      kmax_qg = 0
-      kmax_ni = 0
-      kmax_nr = 0
-      do i = 1, 256
-         mp_debug(i:i) = char(0)
-      enddo
-
-      j_loop:  do j = j_start, j_end
-      i_loop:  do i = i_start, i_end
-
-         pptrain = 0.
-         pptsnow = 0.
-         pptgraul = 0.
-         pptice = 0.
-         RAINNCV(i,j) = 0.
-         IF ( PRESENT (snowncv) ) THEN
-            SNOWNCV(i,j) = 0.
-         ENDIF
-         IF ( PRESENT (graupelncv) ) THEN
-            GRAUPELNCV(i,j) = 0.
-         ENDIF
-         SR(i,j) = 0.
-
-         do k = kts, kte
-            t1d(k) = th(i,k,j)*pii(i,k,j)
-            p1d(k) = p(i,k,j)
-            dz1d(k) = dz(i,k,j)
-            qv1d(k) = qv(i,k,j)
-            qc1d(k) = qc(i,k,j)
-            qi1d(k) = qi(i,k,j)
-            qr1d(k) = qr(i,k,j)
-            qs1d(k) = qs(i,k,j)
-            qg1d(k) = qg(i,k,j)
-            ni1d(k) = ni(i,k,j)
-            nr1d(k) = nr(i,k,j)
-         enddo
-
-         call mp_thompson(qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, &amp;
-                      nr1d, t1d, p1d, dz1d, &amp;
-                      pptrain, pptsnow, pptgraul, pptice, &amp;
-                      kts, kte, dt, i, j)
-
-         pcp_ra(i,j) = pptrain
-         pcp_sn(i,j) = pptsnow
-         pcp_gr(i,j) = pptgraul
-         pcp_ic(i,j) = pptice
-         RAINNCV(i,j) = pptrain + pptsnow + pptgraul + pptice
-         RAINNC(i,j) = RAINNC(i,j) + pptrain + pptsnow + pptgraul + pptice
-         IF ( PRESENT(snowncv) .AND. PRESENT(snownc) ) THEN
-            SNOWNCV(i,j) = pptsnow + pptice
-            SNOWNC(i,j) = SNOWNC(i,j) + pptsnow + pptice
-         ENDIF
-         IF ( PRESENT(graupelncv) .AND. PRESENT(graupelnc) ) THEN
-            GRAUPELNCV(i,j) = pptgraul
-            GRAUPELNC(i,j) = GRAUPELNC(i,j) + pptgraul
-         ENDIF
-         SR(i,j) = (pptsnow + pptgraul + pptice)/(RAINNCV(i,j)+1.e-12)
-
-         do k = kts, kte
-            qv(i,k,j) = qv1d(k)
-            qc(i,k,j) = qc1d(k)
-            qi(i,k,j) = qi1d(k)
-            qr(i,k,j) = qr1d(k)
-            qs(i,k,j) = qs1d(k)
-            qg(i,k,j) = qg1d(k)
-            ni(i,k,j) = ni1d(k)
-            nr(i,k,j) = nr1d(k)
-            th(i,k,j) = t1d(k)/pii(i,k,j)
-            if (qc1d(k) .gt. qc_max) then
-             imax_qc = i
-             jmax_qc = j
-             kmax_qc = k
-             qc_max = qc1d(k)
-            elseif (qc1d(k) .lt. 0.0) then
-             write(mp_debug,*) 'WARNING, negative qc ', qc1d(k),        &amp;
-                        ' at i,j,k=', i,j,k
-!            CALL wrf_debug(150, mp_debug)
-            endif
-            if (qr1d(k) .gt. qr_max) then
-             imax_qr = i
-             jmax_qr = j
-             kmax_qr = k
-             qr_max = qr1d(k)
-            elseif (qr1d(k) .lt. 0.0) then
-             write(mp_debug,*) 'WARNING, negative qr ', qr1d(k),        &amp;
-                        ' at i,j,k=', i,j,k
-!            CALL wrf_debug(150, mp_debug)
-            endif
-            if (nr1d(k) .gt. nr_max) then
-             imax_nr = i
-             jmax_nr = j
-             kmax_nr = k
-             nr_max = nr1d(k)
-            elseif (nr1d(k) .lt. 0.0) then
-             write(mp_debug,*) 'WARNING, negative nr ', nr1d(k),        &amp;
-                        ' at i,j,k=', i,j,k
-!            CALL wrf_debug(150, mp_debug)
-            endif
-            if (qs1d(k) .gt. qs_max) then
-             imax_qs = i
-             jmax_qs = j
-             kmax_qs = k
-             qs_max = qs1d(k)
-            elseif (qs1d(k) .lt. 0.0) then
-             write(mp_debug,*) 'WARNING, negative qs ', qs1d(k),        &amp;
-                        ' at i,j,k=', i,j,k
-!            CALL wrf_debug(150, mp_debug)
-            endif
-            if (qi1d(k) .gt. qi_max) then
-             imax_qi = i
-             jmax_qi = j
-             kmax_qi = k
-             qi_max = qi1d(k)
-            elseif (qi1d(k) .lt. 0.0) then
-             write(mp_debug,*) 'WARNING, negative qi ', qi1d(k),        &amp;
-                        ' at i,j,k=', i,j,k
-!            CALL wrf_debug(150, mp_debug)
-            endif
-            if (qg1d(k) .gt. qg_max) then
-             imax_qg = i
-             jmax_qg = j
-             kmax_qg = k
-             qg_max = qg1d(k)
-            elseif (qg1d(k) .lt. 0.0) then
-             write(mp_debug,*) 'WARNING, negative qg ', qg1d(k),        &amp;
-                        ' at i,j,k=', i,j,k
-!            CALL wrf_debug(150, mp_debug)
-            endif
-            if (ni1d(k) .gt. ni_max) then
-             imax_ni = i
-             jmax_ni = j
-             kmax_ni = k
-             ni_max = ni1d(k)
-            elseif (ni1d(k) .lt. 0.0) then
-             write(mp_debug,*) 'WARNING, negative ni ', ni1d(k),        &amp;
-                        ' at i,j,k=', i,j,k
-!            CALL wrf_debug(150, mp_debug)
-            endif
-            if (qv1d(k) .lt. 0.0) then
-             if (k.lt.kte-2 .and. k.gt.kts+1) then
-                qv(i,k,j) = 0.5*(qv(i,k-1,j) + qv(i,k+1,j))
-             else
-                qv(i,k,j) = 1.E-7
-             endif
-             write(mp_debug,*) 'WARNING, negative qv ', qv1d(k),        &amp;
-                        ' at i,j,k=', i,j,k
-!            CALL wrf_debug(150, mp_debug)
-            endif
-         enddo
-
-!        if (dBZ_tstep) then
-!         call calc_refl10cm (qv1d, qc1d, qr1d, nr1d, qs1d, qg1d,       &amp;
-!                     t1d, p1d, dBZ, kts, kte, i, j)
-!         do k = kts, kte
-!            refl_10cm(i,k,j) = MAX(-35., dBZ(k))
-!         enddo
-!        endif
-
-      enddo i_loop
-      enddo j_loop
-
-! DEBUG - GT
-      write(mp_debug,'(a,7(a,e13.6,1x,a,i3,a,i3,a,i3,a,1x))') 'MP-GT:', &amp;
-         'qc: ', qc_max, '(', imax_qc, ',', jmax_qc, ',', kmax_qc, ')', &amp;
-         'qr: ', qr_max, '(', imax_qr, ',', jmax_qr, ',', kmax_qr, ')', &amp;
-         'qi: ', qi_max, '(', imax_qi, ',', jmax_qi, ',', kmax_qi, ')', &amp;
-         'qs: ', qs_max, '(', imax_qs, ',', jmax_qs, ',', kmax_qs, ')', &amp;
-         'qg: ', qg_max, '(', imax_qg, ',', jmax_qg, ',', kmax_qg, ')', &amp;
-         'ni: ', ni_max, '(', imax_ni, ',', jmax_ni, ',', kmax_ni, ')', &amp;
-         'nr: ', nr_max, '(', imax_nr, ',', jmax_nr, ',', kmax_nr, ')'
-!     CALL wrf_debug(150, mp_debug)
-! END DEBUG - GT
-
-      do i = 1, 256
-         mp_debug(i:i) = char(0)
-      enddo
-
-      END SUBROUTINE mp_gt_driver
-
-!+---+-----------------------------------------------------------------+
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!+---+-----------------------------------------------------------------+
-!.. This subroutine computes the moisture tendencies of water vapor,
-!.. cloud droplets, rain, cloud ice (pristine), snow, and graupel.
-!.. Previously this code was based on Reisner et al (1998), but few of
-!.. those pieces remain.  A complete description is now found in
-!.. Thompson et al. (2004, 2008).
-!+---+-----------------------------------------------------------------+
-!
-      subroutine mp_thompson (qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, &amp;
-                          nr1d, t1d, p1d, dzq, &amp;
-                          pptrain, pptsnow, pptgraul, pptice, &amp;
-                          kts, kte, dt, ii, jj)
-
-      implicit none
-
-!..Sub arguments
-      INTEGER, INTENT(IN):: kts, kte, ii, jj
-      REAL, DIMENSION(kts:kte), INTENT(INOUT):: &amp;
-                          qv1d, qc1d, qi1d, qr1d, qs1d, qg1d, ni1d, &amp;
-                          nr1d, t1d, p1d
-      REAL, DIMENSION(kts:kte), INTENT(IN):: dzq
-      REAL, INTENT(INOUT):: pptrain, pptsnow, pptgraul, pptice
-      REAL, INTENT(IN):: dt
-
-!..Local variables
-      REAL, DIMENSION(kts:kte):: tten, qvten, qcten, qiten, &amp;
-           qrten, qsten, qgten, niten, nrten
-
-      DOUBLE PRECISION, DIMENSION(kts:kte):: prw_vcd
-
-      DOUBLE PRECISION, DIMENSION(kts:kte):: prr_wau, prr_rcw, prr_rcs, &amp;
-           prr_rcg, prr_sml, prr_gml, &amp;
-           prr_rci, prv_rev,          &amp;
-           pnr_wau, pnr_rcs, pnr_rcg, &amp;
-           pnr_rci, pnr_sml, pnr_gml, &amp;
-           pnr_rev, pnr_rcr, pnr_rfz
-
-      DOUBLE PRECISION, DIMENSION(kts:kte):: pri_inu, pni_inu, pri_ihm, &amp;
-           pni_ihm, pri_wfz, pni_wfz, &amp;
-           pri_rfz, pni_rfz, pri_ide, &amp;
-           pni_ide, pri_rci, pni_rci, &amp;
-           pni_sci, pni_iau
-
-      DOUBLE PRECISION, DIMENSION(kts:kte):: prs_iau, prs_sci, prs_rcs, &amp;
-           prs_scw, prs_sde, prs_ihm, &amp;
-           prs_ide
-
-      DOUBLE PRECISION, DIMENSION(kts:kte):: prg_scw, prg_rfz, prg_gde, &amp;
-           prg_gcw, prg_rci, prg_rcs, &amp;
-           prg_rcg, prg_ihm
-
-      REAL, DIMENSION(kts:kte):: temp, pres, qv
-      REAL, DIMENSION(kts:kte):: rc, ri, rr, rs, rg, ni, nr
-      REAL, DIMENSION(kts:kte):: rho, rhof, rhof2
-      REAL, DIMENSION(kts:kte):: qvs, qvsi
-      REAL, DIMENSION(kts:kte):: satw, sati, ssatw, ssati
-      REAL, DIMENSION(kts:kte):: diffu, visco, vsc2, &amp;
-           tcond, lvap, ocp, lvt2
-
-      DOUBLE PRECISION, DIMENSION(kts:kte):: ilamr, ilamg, N0_r, N0_g
-      REAL, DIMENSION(kts:kte):: mvd_r, mvd_c
-      REAL, DIMENSION(kts:kte):: smob, smo2, smo1, smo0, &amp;
-           smoc, smod, smoe, smof
-
-      REAL, DIMENSION(kts:kte):: sed_r, sed_s, sed_g, sed_i, sed_n
-
-      REAL:: rgvm, delta_tp, orho, lfus2
-      REAL, DIMENSION(4):: onstep
-      DOUBLE PRECISION:: N0_exp, N0_min, lam_exp, lamc, lamr, lamg
-      DOUBLE PRECISION:: lami, ilami
-      REAL:: xDc, Dc_b, Dc_g, xDi, xDr, xDs, xDg, Ds_m, Dg_m
-      DOUBLE PRECISION:: Dr_star
-      REAL:: zeta1, zeta, taud, tau
-      REAL:: stoke_r, stoke_s, stoke_g, stoke_i
-      REAL:: vti, vtr, vts, vtg
-      REAL, DIMENSION(kts:kte+1):: vtik, vtnik, vtrk, vtnrk, vtsk, vtgk
-      REAL, DIMENSION(kts:kte):: vts_boost
-      REAL:: Mrat, ils1, ils2, t1_vts, t2_vts, t3_vts, t4_vts, C_snow
-      REAL:: a_, b_, loga_, A1, A2, tf
-      REAL:: tempc, tc0, r_mvd1, r_mvd2, xkrat
-      REAL:: xnc, xri, xni, xmi, oxmi, xrc, xrr, xnr
-      REAL:: xsat, rate_max, sump, ratio
-      REAL:: clap, fcd, dfcd
-      REAL:: otemp, rvs, rvs_p, rvs_pp, gamsc, alphsc, t1_evap, t1_subl
-      REAL:: r_frac, g_frac
-      REAL:: Ef_rw, Ef_sw, Ef_gw, Ef_rr
-      REAL:: dtsave, odts, odt, odzq
-      INTEGER:: i, k, k2, n, nn, nstep, k_0, kbot, IT, iexfrq
-      INTEGER, DIMENSION(4):: ksed1
-      INTEGER:: nir, nis, nig, nii, nic
-      INTEGER:: idx_tc, idx_t, idx_s, idx_g1, idx_g, idx_r1, idx_r,     &amp;
-                idx_i1, idx_i, idx_c, idx, idx_d
-      LOGICAL:: melti, no_micro
-      LOGICAL, DIMENSION(kts:kte):: L_qc, L_qi, L_qr, L_qs, L_qg
-      LOGICAL:: debug_flag
-
-!+---+
-
-      debug_flag = .false.
-!     if (ii.eq.319 .and. jj.eq.39) debug_flag = .true.
-
-      no_micro = .true.
-      dtsave = dt
-      odt = 1./dt
-      odts = 1./dtsave
-      iexfrq = 1
-
-!+---+-----------------------------------------------------------------+
-!.. Source/sink terms.  First 2 chars: &quot;pr&quot; represents source/sink of
-!.. mass while &quot;pn&quot; represents source/sink of number.  Next char is one
-!.. of &quot;v&quot; for water vapor, &quot;r&quot; for rain, &quot;i&quot; for cloud ice, &quot;w&quot; for
-!.. cloud water, &quot;s&quot; for snow, and &quot;g&quot; for graupel.  Next chars
-!.. represent processes: &quot;de&quot; for sublimation/deposition, &quot;ev&quot; for
-!.. evaporation, &quot;fz&quot; for freezing, &quot;ml&quot; for melting, &quot;au&quot; for
-!.. autoconversion, &quot;nu&quot; for ice nucleation, &quot;hm&quot; for Hallet/Mossop
-!.. secondary ice production, and &quot;c&quot; for collection followed by the
-!.. character for the species being collected.  ALL of these terms are
-!.. positive (except for deposition/sublimation terms which can switch
-!.. signs based on super/subsaturation) and are treated as negatives
-!.. where necessary in the tendency equations.
-!+---+-----------------------------------------------------------------+
-
-      do k = kts, kte
-         tten(k) = 0.
-         qvten(k) = 0.
-         qcten(k) = 0.
-         qiten(k) = 0.
-         qrten(k) = 0.
-         qsten(k) = 0.
-         qgten(k) = 0.
-         niten(k) = 0.
-         nrten(k) = 0.
-
-         prw_vcd(k) = 0.
-
-         prv_rev(k) = 0.
-         prr_wau(k) = 0.
-         prr_rcw(k) = 0.
-         prr_rcs(k) = 0.
-         prr_rcg(k) = 0.
-         prr_sml(k) = 0.
-         prr_gml(k) = 0.
-         prr_rci(k) = 0.
-         pnr_wau(k) = 0.
-         pnr_rcs(k) = 0.
-         pnr_rcg(k) = 0.
-         pnr_rci(k) = 0.
-         pnr_sml(k) = 0.
-         pnr_gml(k) = 0.
-         pnr_rev(k) = 0.
-         pnr_rcr(k) = 0.
-         pnr_rfz(k) = 0.
-
-         pri_inu(k) = 0.
-         pni_inu(k) = 0.
-         pri_ihm(k) = 0.
-         pni_ihm(k) = 0.
-         pri_wfz(k) = 0.
-         pni_wfz(k) = 0.
-         pri_rfz(k) = 0.
-         pni_rfz(k) = 0.
-         pri_ide(k) = 0.
-         pni_ide(k) = 0.
-         pri_rci(k) = 0.
-         pni_rci(k) = 0.
-         pni_sci(k) = 0.
-         pni_iau(k) = 0.
-
-         prs_iau(k) = 0.
-         prs_sci(k) = 0.
-         prs_rcs(k) = 0.
-         prs_scw(k) = 0.
-         prs_sde(k) = 0.
-         prs_ihm(k) = 0.
-         prs_ide(k) = 0.
-
-         prg_scw(k) = 0.
-         prg_rfz(k) = 0.
-         prg_gde(k) = 0.
-         prg_gcw(k) = 0.
-         prg_rci(k) = 0.
-         prg_rcs(k) = 0.
-         prg_rcg(k) = 0.
-         prg_ihm(k) = 0.
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Put column of data into local arrays.
-!+---+-----------------------------------------------------------------+
-      do k = kts, kte
-         temp(k) = t1d(k)
-         qv(k) = MAX(1.E-10, qv1d(k))
-         pres(k) = p1d(k)
-         rho(k) = 0.622*pres(k)/(R*temp(k)*(qv(k)+0.622))
-         if (qc1d(k) .gt. R1) then
-            no_micro = .false.
-            rc(k) = qc1d(k)*rho(k)
-            L_qc(k) = .true.
-         else
-            qc1d(k) = 0.0
-            rc(k) = R1
-            L_qc(k) = .false.
-         endif
-         if (qi1d(k) .gt. R1) then
-            no_micro = .false.
-            ri(k) = qi1d(k)*rho(k)
-            ni(k) = MAX(1., ni1d(k)*rho(k))
-            L_qi(k) = .true.
-            lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi
-            ilami = 1./lami
-            xDi = (bm_i + mu_i + 1.) * ilami
-            if (xDi.lt. 20.E-6) then
-             lami = cie(2)/20.E-6
-             ni(k) = MIN(500.D3, cig(1)*oig2*ri(k)/am_i*lami**bm_i)
-            elseif (xDi.gt. 300.E-6) then
-             lami = cie(2)/300.E-6
-             ni(k) = cig(1)*oig2*ri(k)/am_i*lami**bm_i
-            endif
-         else
-            qi1d(k) = 0.0
-            ni1d(k) = 0.0
-            ri(k) = R1
-            ni(k) = 0.01
-            L_qi(k) = .false.
-         endif
-
-         if (qr1d(k) .gt. R1) then
-            no_micro = .false.
-            rr(k) = qr1d(k)*rho(k)
-            nr(k) = MAX(1., nr1d(k)*rho(k))
-            L_qr(k) = .true.
-            if (nr(k) .gt. 1.0) then
-             lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr
-             mvd_r(k) = (3.0 + mu_r + 0.672) / lamr
-             if (mvd_r(k) .gt. 2.5E-3) then
-                mvd_r(k) = 2.5E-3
-                lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
-                nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r
-             elseif (mvd_r(k) .lt. D0r*0.75) then
-                mvd_r(k) = D0r*0.75
-                lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
-                nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r
-             endif
-            else
-             if (qr1d(k) .gt. R2) then
-                mvd_r(k) = 2.5E-3
-             else
-                mvd_r(k) = 2.5E-3 / 3.0**(ALOG10(R2)-ALOG10(qr1d(k)))
-             endif
-             lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
-             nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r
-            endif
-         else
-            qr1d(k) = 0.0
-            nr1d(k) = 0.0
-            rr(k) = R1
-            nr(k) = 1.0
-            L_qr(k) = .false.
-         endif
-         if (qs1d(k) .gt. R1) then
-            no_micro = .false.
-            rs(k) = qs1d(k)*rho(k)
-            L_qs(k) = .true.
-         else
-            qs1d(k) = 0.0
-            rs(k) = R1
-            L_qs(k) = .false.
-         endif
-         if (qg1d(k) .gt. R1) then
-            no_micro = .false.
-            rg(k) = qg1d(k)*rho(k)
-            L_qg(k) = .true.
-         else
-            qg1d(k) = 0.0
-            rg(k) = R1
-            L_qg(k) = .false.
-         endif
-      enddo
-
-
-!+---+-----------------------------------------------------------------+
-!..Derive various thermodynamic variables frequently used.
-!.. Saturation vapor pressure (mixing ratio) over liquid/ice comes from
-!.. Flatau et al. 1992; enthalpy (latent heat) of vaporization from
-!.. Bohren &amp; Albrecht 1998; others from Pruppacher &amp; Klett 1978.
-!+---+-----------------------------------------------------------------+
-      do k = kts, kte
-         tempc = temp(k) - 273.15
-         rhof(k) = SQRT(RHO_NOT/rho(k))
-         rhof2(k) = SQRT(rhof(k))
-         qvs(k) = rslf(pres(k), temp(k))
-         if (tempc .le. 0.0) then
-          qvsi(k) = rsif(pres(k), temp(k))
-         else
-          qvsi(k) = qvs(k)
-         endif
-         satw(k) = qv(k)/qvs(k)
-         sati(k) = qv(k)/qvsi(k)
-         ssatw(k) = satw(k) - 1.
-         ssati(k) = sati(k) - 1.
-         if (abs(ssatw(k)).lt. eps) ssatw(k) = 0.0
-         if (abs(ssati(k)).lt. eps) ssati(k) = 0.0
-         if (no_micro .and. ssati(k).gt. 0.0) no_micro = .false.
-         diffu(k) = 2.11E-5*(temp(k)/273.15)**1.94 * (101325./pres(k))
-         if (tempc .ge. 0.0) then
-            visco(k) = (1.718+0.0049*tempc)*1.0E-5
-         else
-            visco(k) = (1.718+0.0049*tempc-1.2E-5*tempc*tempc)*1.0E-5
-         endif
-         ocp(k) = 1./(Cp*(1.+0.887*qv(k)))
-         vsc2(k) = SQRT(rho(k)/visco(k))
-         lvap(k) = lvap0 + (2106.0 - 4218.0)*tempc
-         tcond(k) = (5.69 + 0.0168*tempc)*1.0E-5 * 418.936
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..If no existing hydrometeor species and no chance to initiate ice or
-!.. condense cloud water, just exit quickly!
-!+---+-----------------------------------------------------------------+
-
-      if (no_micro) return
-
-!+---+-----------------------------------------------------------------+
-!..Calculate y-intercept, slope, and useful moments for snow.
-!+---+-----------------------------------------------------------------+
-      if (.not. iiwarm) then
-      do k = kts, kte
-         if (.not. L_qs(k)) CYCLE
-         tc0 = MIN(-0.1, temp(k)-273.15)
-         smob(k) = rs(k)*oams
-
-!..All other moments based on reference, 2nd moment.  If bm_s.ne.2,
-!.. then we must compute actual 2nd moment and use as reference.
-         if (bm_s.gt.(2.0-1.e-3) .and. bm_s.lt.(2.0+1.e-3)) then
-            smo2(k) = smob(k)
-         else
-            loga_ = sa(1) + sa(2)*tc0 + sa(3)*bm_s &amp;
-               + sa(4)*tc0*bm_s + sa(5)*tc0*tc0 &amp;
-               + sa(6)*bm_s*bm_s + sa(7)*tc0*tc0*bm_s &amp;
-               + sa(8)*tc0*bm_s*bm_s + sa(9)*tc0*tc0*tc0 &amp;
-               + sa(10)*bm_s*bm_s*bm_s
-            a_ = 10.0**loga_
-            b_ = sb(1) + sb(2)*tc0 + sb(3)*bm_s &amp;
-               + sb(4)*tc0*bm_s + sb(5)*tc0*tc0 &amp;
-               + sb(6)*bm_s*bm_s + sb(7)*tc0*tc0*bm_s &amp;
-               + sb(8)*tc0*bm_s*bm_s + sb(9)*tc0*tc0*tc0 &amp;
-               + sb(10)*bm_s*bm_s*bm_s
-            smo2(k) = (smob(k)/a_)**(1./b_)
-         endif
-
-!..Calculate 0th moment.  Represents snow number concentration.
-         loga_ = sa(1) + sa(2)*tc0 + sa(5)*tc0*tc0 + sa(9)*tc0*tc0*tc0
-         a_ = 10.0**loga_
-         b_ = sb(1) + sb(2)*tc0 + sb(5)*tc0*tc0 + sb(9)*tc0*tc0*tc0
-         smo0(k) = a_ * smo2(k)**b_
-
-!..Calculate 1st moment.  Useful for depositional growth and melting.
-         loga_ = sa(1) + sa(2)*tc0 + sa(3) &amp;
-               + sa(4)*tc0 + sa(5)*tc0*tc0 &amp;
-               + sa(6) + sa(7)*tc0*tc0 &amp;
-               + sa(8)*tc0 + sa(9)*tc0*tc0*tc0 &amp;
-               + sa(10)
-         a_ = 10.0**loga_
-         b_ = sb(1)+ sb(2)*tc0 + sb(3) + sb(4)*tc0 &amp;
-              + sb(5)*tc0*tc0 + sb(6) &amp;
-              + sb(7)*tc0*tc0 + sb(8)*tc0 &amp;
-              + sb(9)*tc0*tc0*tc0 + sb(10)
-         smo1(k) = a_ * smo2(k)**b_
-
-!..Calculate bm_s+1 (th) moment.  Useful for diameter calcs.
-         loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(1) &amp;
-               + sa(4)*tc0*cse(1) + sa(5)*tc0*tc0 &amp;
-               + sa(6)*cse(1)*cse(1) + sa(7)*tc0*tc0*cse(1) &amp;
-               + sa(8)*tc0*cse(1)*cse(1) + sa(9)*tc0*tc0*tc0 &amp;
-               + sa(10)*cse(1)*cse(1)*cse(1)
-         a_ = 10.0**loga_
-         b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(1) + sb(4)*tc0*cse(1) &amp;
-              + sb(5)*tc0*tc0 + sb(6)*cse(1)*cse(1) &amp;
-              + sb(7)*tc0*tc0*cse(1) + sb(8)*tc0*cse(1)*cse(1) &amp;
-              + sb(9)*tc0*tc0*tc0 + sb(10)*cse(1)*cse(1)*cse(1)
-         smoc(k) = a_ * smo2(k)**b_
-
-!..Calculate bv_s+2 (th) moment.  Useful for riming.
-         loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(13) &amp;
-               + sa(4)*tc0*cse(13) + sa(5)*tc0*tc0 &amp;
-               + sa(6)*cse(13)*cse(13) + sa(7)*tc0*tc0*cse(13) &amp;
-               + sa(8)*tc0*cse(13)*cse(13) + sa(9)*tc0*tc0*tc0 &amp;
-               + sa(10)*cse(13)*cse(13)*cse(13)
-         a_ = 10.0**loga_
-         b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(13) + sb(4)*tc0*cse(13) &amp;
-              + sb(5)*tc0*tc0 + sb(6)*cse(13)*cse(13) &amp;
-              + sb(7)*tc0*tc0*cse(13) + sb(8)*tc0*cse(13)*cse(13) &amp;
-              + sb(9)*tc0*tc0*tc0 + sb(10)*cse(13)*cse(13)*cse(13)
-         smoe(k) = a_ * smo2(k)**b_
-
-!..Calculate 1+(bv_s+1)/2 (th) moment.  Useful for depositional growth.
-         loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(16) &amp;
-               + sa(4)*tc0*cse(16) + sa(5)*tc0*tc0 &amp;
-               + sa(6)*cse(16)*cse(16) + sa(7)*tc0*tc0*cse(16) &amp;
-               + sa(8)*tc0*cse(16)*cse(16) + sa(9)*tc0*tc0*tc0 &amp;
-               + sa(10)*cse(16)*cse(16)*cse(16)
-         a_ = 10.0**loga_
-         b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(16) + sb(4)*tc0*cse(16) &amp;
-              + sb(5)*tc0*tc0 + sb(6)*cse(16)*cse(16) &amp;
-              + sb(7)*tc0*tc0*cse(16) + sb(8)*tc0*cse(16)*cse(16) &amp;
-              + sb(9)*tc0*tc0*tc0 + sb(10)*cse(16)*cse(16)*cse(16)
-         smof(k) = a_ * smo2(k)**b_
-
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Calculate y-intercept, slope values for graupel.
-!+---+-----------------------------------------------------------------+
-      do k = kte, kts, -1
-         N0_exp = (gonv_max-gonv_min)*0.5D0                             &amp;
-                * tanh((0.01E-3-(rc(k)+rr(k)))/0.75E-3)                 &amp;
-                + (gonv_max+gonv_min)*0.5D0
-!        N0_exp = (gonv_max-gonv_min)*0.5D0                             &amp;
-!               * tanh((-15.-(temp(k)-273.15))/7.5)                     &amp;
-!               + (gonv_max+gonv_min)*0.5D0
-         lam_exp = (N0_exp*am_g*cgg(1)/rg(k))**oge1
-         lamg = lam_exp * (cgg(3)*ogg2*ogg1)**obmg
-         ilamg(k) = 1./lamg
-         N0_g(k) = N0_exp/(cgg(2)*lam_exp) * lamg**cge(2)
-      enddo
-
-      endif
-
-!+---+-----------------------------------------------------------------+
-!..Calculate y-intercept, slope values for rain.
-!+---+-----------------------------------------------------------------+
-      do k = kte, kts, -1
-         lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr
-         ilamr(k) = 1./lamr
-         mvd_r(k) = (3.0 + mu_r + 0.672) / lamr
-         N0_r(k) = nr(k)*org2*lamr**cre(2)
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Compute warm-rain process terms (except evap done later).
-!+---+-----------------------------------------------------------------+
-
-      do k = kts, kte
-
-!..Rain self-collection follows Seifert, 1994 and drop break-up
-!.. follows Verlinde and Cotton, 1993.                                        RAIN2M
-         if (L_qr(k) .and. mvd_r(k).gt. D0r) then
-          if (mvd_r(k) .le. 1750.0E-6) then
-             Ef_rr = 1.0
-          else
-             Ef_rr = 2.0 - EXP(2300.0*(mvd_r(k)-1750.0E-6))
-          endif
-          pnr_rcr(k) = Ef_rr * 8.*nr(k)*rr(k)
-         endif
-
-         if (.not. L_qc(k)) CYCLE
-         xDc = MAX(D0c*1.E6, ((rc(k)/(am_r*Nt_c))**obmr) * 1.E6)
-         lamc = (Nt_c*am_r* ccg(2) * ocg1 / rc(k))**obmr
-         mvd_c(k) = (3.0+mu_c+0.672) / lamc
-
-!..Autoconversion follows Berry &amp; Reinhardt (1974) with characteristic
-!.. diameters correctly computed from gamma distrib of cloud droplets.
-         if (rc(k).gt. 0.01e-3) then
-          Dc_g = ((ccg(3)*ocg2)**obmr / lamc) * 1.E6
-          Dc_b = (xDc*xDc*xDc*Dc_g*Dc_g*Dc_g - xDc*xDc*xDc*xDc*xDc*xDc) &amp;
-                 **(1./6.)
-          zeta1 = 0.5*((6.25E-6*xDc*Dc_b*Dc_b*Dc_b - 0.4) &amp;
-                     + abs(6.25E-6*xDc*Dc_b*Dc_b*Dc_b - 0.4))
-          zeta = 0.027*rc(k)*zeta1
-          taud = 0.5*((0.5*Dc_b - 7.5) + abs(0.5*Dc_b - 7.5)) + R1
-          tau  = 3.72/(rc(k)*taud)
-          prr_wau(k) = zeta/tau
-          prr_wau(k) = MIN(DBLE(rc(k)*odts), prr_wau(k))
-          pnr_wau(k) = prr_wau(k) / (am_r*mu_c/3.*D0r*D0r*D0r/rho(k))       ! RAIN2M
-         endif
-
-!..Rain collecting cloud water.  In CE, assume Dc&lt;&lt;Dr and vtc=~0.
-         if (L_qr(k) .and. mvd_r(k).gt. D0r .and. mvd_c(k).gt. D0c) then
-          lamr = 1./ilamr(k)
-          idx = 1 + INT(nbr*DLOG(mvd_r(k)/Dr(1))/DLOG(Dr(nbr)/Dr(1)))
-          idx = MIN(idx, nbr)
-          Ef_rw = t_Efrw(idx, INT(mvd_c(k)*1.E6))
-          prr_rcw(k) = rhof(k)*t1_qr_qc*Ef_rw*rc(k)*N0_r(k) &amp;
-                         *((lamr+fv_r)**(-cre(9)))
-          prr_rcw(k) = MIN(DBLE(rc(k)*odts), prr_rcw(k))
-         endif
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Compute all frozen hydrometeor species' process terms.
-!+---+-----------------------------------------------------------------+
-      if (.not. iiwarm) then
-      do k = kts, kte
-         vts_boost(k) = 1.5
-
-!..Temperature lookup table indexes.
-         tempc = temp(k) - 273.15
-         idx_tc = MAX(1, MIN(NINT(-tempc), 45) )
-         idx_t = INT( (tempc-2.5)/5. ) - 1
-         idx_t = MAX(1, -idx_t)
-         idx_t = MIN(idx_t, ntb_t)
-         IT = MAX(1, MIN(NINT(-tempc), 31) )
-
-!..Cloud water lookup table index.
-         if (rc(k).gt. r_c(1)) then
-          nic = NINT(ALOG10(rc(k)))
-          do nn = nic-1, nic+1
-             n = nn
-             if ( (rc(k)/10.**nn).ge.1.0 .and. &amp;
-                  (rc(k)/10.**nn).lt.10.0) goto 141
-          enddo
- 141      continue
-          idx_c = INT(rc(k)/10.**n) + 10*(n-nic2) - (n-nic2)
-          idx_c = MAX(1, MIN(idx_c, ntb_c))
-         else
-          idx_c = 1
-         endif
-
-!..Cloud ice lookup table indexes.
-         if (ri(k).gt. r_i(1)) then
-          nii = NINT(ALOG10(ri(k)))
-          do nn = nii-1, nii+1
-             n = nn
-             if ( (ri(k)/10.**nn).ge.1.0 .and. &amp;
-                  (ri(k)/10.**nn).lt.10.0) goto 142
-          enddo
- 142      continue
-          idx_i = INT(ri(k)/10.**n) + 10*(n-nii2) - (n-nii2)
-          idx_i = MAX(1, MIN(idx_i, ntb_i))
-         else
-          idx_i = 1
-         endif
-
-         if (ni(k).gt. Nt_i(1)) then
-          nii = NINT(ALOG10(ni(k)))
-          do nn = nii-1, nii+1
-             n = nn
-             if ( (ni(k)/10.**nn).ge.1.0 .and. &amp;
-                  (ni(k)/10.**nn).lt.10.0) goto 143
-          enddo
- 143      continue
-          idx_i1 = INT(ni(k)/10.**n) + 10*(n-nii3) - (n-nii3)
-          idx_i1 = MAX(1, MIN(idx_i1, ntb_i1))
-         else
-          idx_i1 = 1
-         endif
-
-!..Rain lookup table indexes.
-         if (rr(k).gt. r_r(1)) then
-          nir = NINT(ALOG10(rr(k)))
-          do nn = nir-1, nir+1
-             n = nn
-             if ( (rr(k)/10.**nn).ge.1.0 .and. &amp;
-                  (rr(k)/10.**nn).lt.10.0) goto 144
-          enddo
- 144      continue
-          idx_r = INT(rr(k)/10.**n) + 10*(n-nir2) - (n-nir2)
-          idx_r = MAX(1, MIN(idx_r, ntb_r))
-
-          lamr = 1./ilamr(k)
-          lam_exp = lamr * (crg(3)*org2*org1)**bm_r
-          N0_exp = org1*rr(k)/am_r * lam_exp**cre(1)
-          nir = NINT(DLOG10(N0_exp))
-          do nn = nir-1, nir+1
-             n = nn
-             if ( (N0_exp/10.**nn).ge.1.0 .and. &amp;
-                  (N0_exp/10.**nn).lt.10.0) goto 145
-          enddo
- 145      continue
-          idx_r1 = INT(N0_exp/10.**n) + 10*(n-nir3) - (n-nir3)
-          idx_r1 = MAX(1, MIN(idx_r1, ntb_r1))
-         else
-          idx_r = 1
-          idx_r1 = ntb_r1
-         endif
-
-!..Snow lookup table index.
-         if (rs(k).gt. r_s(1)) then
-          nis = NINT(ALOG10(rs(k)))
-          do nn = nis-1, nis+1
-             n = nn
-             if ( (rs(k)/10.**nn).ge.1.0 .and. &amp;
-                  (rs(k)/10.**nn).lt.10.0) goto 146
-          enddo
- 146      continue
-          idx_s = INT(rs(k)/10.**n) + 10*(n-nis2) - (n-nis2)
-          idx_s = MAX(1, MIN(idx_s, ntb_s))
-         else
-          idx_s = 1
-         endif
-
-!..Graupel lookup table index.
-         if (rg(k).gt. r_g(1)) then
-          nig = NINT(ALOG10(rg(k)))
-          do nn = nig-1, nig+1
-             n = nn
-             if ( (rg(k)/10.**nn).ge.1.0 .and. &amp;
-                  (rg(k)/10.**nn).lt.10.0) goto 147
-          enddo
- 147      continue
-          idx_g = INT(rg(k)/10.**n) + 10*(n-nig2) - (n-nig2)
-          idx_g = MAX(1, MIN(idx_g, ntb_g))
-
-          lamg = 1./ilamg(k)
-          lam_exp = lamg * (cgg(3)*ogg2*ogg1)**bm_g
-          N0_exp = ogg1*rg(k)/am_g * lam_exp**cge(1)
-          nig = NINT(DLOG10(N0_exp))
-          do nn = nig-1, nig+1
-             n = nn
-             if ( (N0_exp/10.**nn).ge.1.0 .and. &amp;
-                  (N0_exp/10.**nn).lt.10.0) goto 148
-          enddo
- 148      continue
-          idx_g1 = INT(N0_exp/10.**n) + 10*(n-nig3) - (n-nig3)
-          idx_g1 = MAX(1, MIN(idx_g1, ntb_g1))
-         else
-          idx_g = 1
-          idx_g1 = ntb_g1
-         endif
-
-!..Deposition/sublimation prefactor (from Srivastava &amp; Coen 1992).
-         otemp = 1./temp(k)
-         rvs = rho(k)*qvsi(k)
-         rvs_p = rvs*otemp*(lsub*otemp*oRv - 1.)
-         rvs_pp = rvs * ( otemp*(lsub*otemp*oRv - 1.) &amp;
-                         *otemp*(lsub*otemp*oRv - 1.) &amp;
-                         + (-2.*lsub*otemp*otemp*otemp*oRv) &amp;
-                         + otemp*otemp)
-         gamsc = lsub*diffu(k)/tcond(k) * rvs_p
-         alphsc = 0.5*(gamsc/(1.+gamsc))*(gamsc/(1.+gamsc)) &amp;
-                    * rvs_pp/rvs_p * rvs/rvs_p
-         alphsc = MAX(1.E-9, alphsc)
-         xsat = ssati(k)
-         if (abs(xsat).lt. 1.E-9) xsat=0.
-         t1_subl = 4.*PI*( 1.0 - alphsc*xsat &amp;
-                + 2.*alphsc*alphsc*xsat*xsat &amp;
-                - 5.*alphsc*alphsc*alphsc*xsat*xsat*xsat ) &amp;
-                / (1.+gamsc)
-
-!..Snow collecting cloud water.  In CE, assume Dc&lt;&lt;Ds and vtc=~0.
-         if (L_qc(k) .and. mvd_c(k).gt. D0c) then
-          xDs = 0.0
-          if (L_qs(k)) xDs = smoc(k) / smob(k)
-          if (xDs .gt. D0s) then
-           idx = 1 + INT(nbs*DLOG(xDs/Ds(1))/DLOG(Ds(nbs)/Ds(1)))
-           idx = MIN(idx, nbs)
-           Ef_sw = t_Efsw(idx, INT(mvd_c(k)*1.E6))
-           prs_scw(k) = rhof(k)*t1_qs_qc*Ef_sw*rc(k)*smoe(k)
-          endif
-
-!..Graupel collecting cloud water.  In CE, assume Dc&lt;&lt;Dg and vtc=~0.
-          if (rg(k).ge. r_g(1) .and. mvd_c(k).gt. D0c) then
-           xDg = (bm_g + mu_g + 1.) * ilamg(k)
-           vtg = rhof(k)*av_g*cgg(6)*ogg3 * ilamg(k)**bv_g
-           stoke_g = mvd_c(k)*mvd_c(k)*vtg*rho_w/(9.*visco(k)*xDg)
-           if (xDg.gt. D0g) then
-            if (stoke_g.ge.0.4 .and. stoke_g.le.10.) then
-             Ef_gw = 0.55*ALOG10(2.51*stoke_g)
-            elseif (stoke_g.lt.0.4) then
-             Ef_gw = 0.0
-            elseif (stoke_g.gt.10) then
-             Ef_gw = 0.77
-            endif
-            prg_gcw(k) = rhof(k)*t1_qg_qc*Ef_gw*rc(k)*N0_g(k) &amp;
-                          *ilamg(k)**cge(9)
-           endif
-          endif
-         endif
-
-!..Rain collecting snow.  Cannot assume Wisner (1972) approximation
-!.. or Mizuno (1990) approach so we solve the CE explicitly and store
-!.. results in lookup table.
-         if (rr(k).ge. r_r(1)) then
-          if (rs(k).ge. r_s(1)) then
-           if (temp(k).lt.T_0) then
-            prr_rcs(k) = -(tmr_racs2(idx_s,idx_t,idx_r1,idx_r) &amp;
-                           + tcr_sacr2(idx_s,idx_t,idx_r1,idx_r) &amp;
-                           + tmr_racs1(idx_s,idx_t,idx_r1,idx_r) &amp;
-                           + tcr_sacr1(idx_s,idx_t,idx_r1,idx_r))
-            prs_rcs(k) = tmr_racs2(idx_s,idx_t,idx_r1,idx_r) &amp;
-                         + tcr_sacr2(idx_s,idx_t,idx_r1,idx_r) &amp;
-                         - tcs_racs1(idx_s,idx_t,idx_r1,idx_r) &amp;
-                         - tms_sacr1(idx_s,idx_t,idx_r1,idx_r)
-            prg_rcs(k) = tmr_racs1(idx_s,idx_t,idx_r1,idx_r) &amp;
-                         + tcr_sacr1(idx_s,idx_t,idx_r1,idx_r) &amp;
-                         + tcs_racs1(idx_s,idx_t,idx_r1,idx_r) &amp;
-                         + tms_sacr1(idx_s,idx_t,idx_r1,idx_r)
-            prr_rcs(k) = MAX(DBLE(-rr(k)*odts), prr_rcs(k))
-            prs_rcs(k) = MAX(DBLE(-rs(k)*odts), prs_rcs(k))
-            prg_rcs(k) = MIN(DBLE((rr(k)+rs(k))*odts), prg_rcs(k))
-            pnr_rcs(k) = tnr_racs1(idx_s,idx_t,idx_r1,idx_r)            &amp;   ! RAIN2M
-                         + tnr_racs2(idx_s,idx_t,idx_r1,idx_r)          &amp;
-                         + tnr_sacr1(idx_s,idx_t,idx_r1,idx_r)          &amp;
-                         + tnr_sacr2(idx_s,idx_t,idx_r1,idx_r)
-           else
-            prs_rcs(k) = -(tcs_racs1(idx_s,idx_t,idx_r1,idx_r) &amp;
-                           + tcs_racs2(idx_s,idx_t,idx_r1,idx_r))
-            prs_rcs(k) = MAX(DBLE(-rs(k)*odts), prs_rcs(k))
-            prr_rcs(k) = -prs_rcs(k)
-            pnr_rcs(k) = tnr_racs2(idx_s,idx_t,idx_r1,idx_r)            &amp;   ! RAIN2M
-                         + tnr_sacr2(idx_s,idx_t,idx_r1,idx_r)
-           endif
-           pnr_rcs(k) = MIN(DBLE(nr(k)*odts), pnr_rcs(k))
-          endif
-
-!..Rain collecting graupel.  Cannot assume Wisner (1972) approximation
-!.. or Mizuno (1990) approach so we solve the CE explicitly and store
-!.. results in lookup table.
-          if (rg(k).ge. r_g(1)) then
-           if (temp(k).lt.T_0) then
-            prg_rcg(k) = tmr_racg(idx_g1,idx_g,idx_r1,idx_r) &amp;
-                         + tcr_gacr(idx_g1,idx_g,idx_r1,idx_r)
-            prg_rcg(k) = MIN(DBLE(rr(k)*odts), prg_rcg(k))
-            prr_rcg(k) = -prg_rcg(k)
-            pnr_rcg(k) = tnr_racg(idx_g1,idx_g,idx_r1,idx_r)            &amp;   ! RAIN2M
-                         + tnr_gacr(idx_g1,idx_g,idx_r1,idx_r)
-            pnr_rcg(k) = MIN(DBLE(nr(k)*odts), pnr_rcg(k))
-           else
-            prr_rcg(k) = tcg_racg(idx_g1,idx_g,idx_r1,idx_r)
-            prr_rcg(k) = MIN(DBLE(rg(k)*odts), prr_rcg(k))
-            prg_rcg(k) = -prr_rcg(k)
-           endif
-          endif
-         endif
-
-!+---+-----------------------------------------------------------------+
-!..Next IF block handles only those processes below 0C.
-!+---+-----------------------------------------------------------------+
-
-         if (temp(k).lt.T_0) then
-
-          vts_boost(k) = 1.0
-          rate_max = (qv(k)-qvsi(k))*rho(k)*odts*0.999
-
-!..Freezing of water drops into graupel/cloud ice (Bigg 1953).
-          if (rr(k).gt. r_r(1)) then
-           prg_rfz(k) = tpg_qrfz(idx_r,idx_r1,idx_tc)*odts
-           pri_rfz(k) = tpi_qrfz(idx_r,idx_r1,idx_tc)*odts
-           pni_rfz(k) = tni_qrfz(idx_r,idx_r1,idx_tc)*odts
-           pnr_rfz(k) = tnr_qrfz(idx_r,idx_r1,idx_tc)*odts                 ! RAIN2M
-           pnr_rfz(k) = MIN(DBLE(nr(k)*odts), pnr_rfz(k))
-          elseif (rr(k).gt. R1 .and. temp(k).lt.HGFR) then
-           pri_rfz(k) = rr(k)*odts
-           pnr_rfz(k) = nr(k)*odts                                         ! RAIN2M
-           pni_rfz(k) = pnr_rfz(k)
-          endif
-          if (rc(k).gt. r_c(1)) then
-           pri_wfz(k) = tpi_qcfz(idx_c,idx_tc)*odts
-           pri_wfz(k) = MIN(DBLE(rc(k)*odts), pri_wfz(k))
-           pni_wfz(k) = tni_qcfz(idx_c,idx_tc)*odts
-           pni_wfz(k) = MIN(DBLE(Nt_c*odts), pri_wfz(k)/(2.*xm0i), &amp;
-                                pni_wfz(k))
-          endif
-
-!..Nucleate ice from deposition &amp; condensation freezing (Cooper 1986)
-!.. but only if water sat and T&lt;-12C or 25%+ ice supersaturated.
-          if ( (ssati(k).ge. 0.25) .or. (ssatw(k).gt. eps &amp;
-                                .and. temp(k).lt.261.15) ) then
-           xnc = MIN(250.E3, TNO*EXP(ATO*(T_0-temp(k))))
-           xni = ni(k) + (pni_rfz(k)+pni_wfz(k))*dtsave
-           pni_inu(k) = 0.5*(xnc-xni + abs(xnc-xni))*odts
-           pri_inu(k) = MIN(DBLE(rate_max), xm0i*pni_inu(k))
-           pni_inu(k) = pri_inu(k)/xm0i
-          endif
-
-!..Deposition/sublimation of cloud ice (Srivastava &amp; Coen 1992).
-          if (L_qi(k)) then
-           lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi
-           ilami = 1./lami
-           xDi = MAX(DBLE(D0i), (bm_i + mu_i + 1.) * ilami)
-           xmi = am_i*xDi**bm_i
-           oxmi = 1./xmi
-           pri_ide(k) = C_cube*t1_subl*diffu(k)*ssati(k)*rvs &amp;
-                  *oig1*cig(5)*ni(k)*ilami
-
-           if (pri_ide(k) .lt. 0.0) then
-            pri_ide(k) = MAX(DBLE(-ri(k)*odts), pri_ide(k), DBLE(rate_max))
-            pni_ide(k) = pri_ide(k)*oxmi
-            pni_ide(k) = MAX(DBLE(-ni(k)*odts), pni_ide(k))
-           else
-            pri_ide(k) = MIN(pri_ide(k), DBLE(rate_max))
-            prs_ide(k) = (1.0D0-tpi_ide(idx_i,idx_i1))*pri_ide(k)
-            pri_ide(k) = tpi_ide(idx_i,idx_i1)*pri_ide(k)
-           endif
-
-!..Some cloud ice needs to move into the snow category.  Use lookup
-!.. table that resulted from explicit bin representation of distrib.
-           if ( (idx_i.eq. ntb_i) .or. (xDi.gt. 5.0*D0s) ) then
-            prs_iau(k) = ri(k)*.99*odts
-            pni_iau(k) = ni(k)*.95*odts
-           elseif (xDi.lt. 0.1*D0s) then
-            prs_iau(k) = 0.
-            pni_iau(k) = 0.
-           else
-            prs_iau(k) = tps_iaus(idx_i,idx_i1)*odts
-            prs_iau(k) = MIN(DBLE(ri(k)*.99*odts), prs_iau(k))
-            pni_iau(k) = tni_iaus(idx_i,idx_i1)*odts
-            pni_iau(k) = MIN(DBLE(ni(k)*.95*odts), pni_iau(k))
-           endif
-          endif
-
-!..Deposition/sublimation of snow/graupel follows Srivastava &amp; Coen
-!.. (1992).
-          if (L_qs(k)) then
-           C_snow = C_sqrd + (tempc+15.)*(C_cube-C_sqrd)/(-30.+15.)
-           C_snow = MAX(C_sqrd, MIN(C_snow, C_cube))
-           prs_sde(k) = C_snow*t1_subl*diffu(k)*ssati(k)*rvs &amp;
-                        * (t1_qs_sd*smo1(k) &amp;
-                         + t2_qs_sd*rhof2(k)*vsc2(k)*smof(k))
-           if (prs_sde(k).lt. 0.) then
-            prs_sde(k) = MAX(DBLE(-rs(k)*odts), prs_sde(k), DBLE(rate_max))
-           else
-            prs_sde(k) = MIN(prs_sde(k), DBLE(rate_max))
-           endif
-          endif
-
-          if (L_qg(k) .and. ssati(k).lt. -eps) then
-           prg_gde(k) = C_cube*t1_subl*diffu(k)*ssati(k)*rvs &amp;
-               * N0_g(k) * (t1_qg_sd*ilamg(k)**cge(10) &amp;
-               + t2_qg_sd*vsc2(k)*rhof2(k)*ilamg(k)**cge(11))
-           if (prg_gde(k).lt. 0.) then
-            prg_gde(k) = MAX(DBLE(-rg(k)*odts), prg_gde(k), DBLE(rate_max))
-           else
-            prg_gde(k) = MIN(prg_gde(k), DBLE(rate_max))
-           endif
-          endif
-
-!..Snow collecting cloud ice.  In CE, assume Di&lt;&lt;Ds and vti=~0.
-          if (L_qi(k)) then
-           lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi
-           ilami = 1./lami
-           xDi = MAX(DBLE(D0i), (bm_i + mu_i + 1.) * ilami)
-           xmi = am_i*xDi**bm_i
-           oxmi = 1./xmi
-           if (rs(k).ge. r_s(1)) then
-            prs_sci(k) = t1_qs_qi*rhof(k)*Ef_si*ri(k)*smoe(k)
-            pni_sci(k) = prs_sci(k) * oxmi
-           endif
-
-!..Rain collecting cloud ice.  In CE, assume Di&lt;&lt;Dr and vti=~0.
-           if (rr(k).ge. r_r(1) .and. mvd_r(k).gt. 4.*xDi) then
-            lamr = 1./ilamr(k)
-            pri_rci(k) = rhof(k)*t1_qr_qi*Ef_ri*ri(k)*N0_r(k) &amp;
-                           *((lamr+fv_r)**(-cre(9)))
-            pnr_rci(k) = rhof(k)*t1_qr_qi*Ef_ri*ni(k)*N0_r(k)           &amp;   ! RAIN2M
-                           *((lamr+fv_r)**(-cre(9)))
-            pni_rci(k) = pri_rci(k) * oxmi
-            prr_rci(k) = rhof(k)*t2_qr_qi*Ef_ri*ni(k)*N0_r(k) &amp;
-                           *((lamr+fv_r)**(-cre(8)))
-            prr_rci(k) = MIN(DBLE(rr(k)*odts), prr_rci(k))
-            prg_rci(k) = pri_rci(k) + prr_rci(k)
-           endif
-          endif
-
-!..Ice multiplication from rime-splinters (Hallet &amp; Mossop 1974).
-          if (prg_gcw(k).gt. eps .and. tempc.gt.-8.0) then
-           tf = 0.
-           if (tempc.ge.-5.0 .and. tempc.lt.-3.0) then
-            tf = 0.5*(-3.0 - tempc)
-           elseif (tempc.gt.-8.0 .and. tempc.lt.-5.0) then
-            tf = 0.33333333*(8.0 + tempc)
-           endif
-           pni_ihm(k) = 3.5E8*tf*prg_gcw(k)
-           pri_ihm(k) = xm0i*pni_ihm(k)
-           prs_ihm(k) = prs_scw(k)/(prs_scw(k)+prg_gcw(k)) &amp;
-                          * pri_ihm(k)
-           prg_ihm(k) = prg_gcw(k)/(prs_scw(k)+prg_gcw(k)) &amp;
-                          * pri_ihm(k)
-          endif
-
-!..A portion of rimed snow converts to graupel but some remains snow.
-!.. Interp from 5 to 75% as riming factor increases from 5.0 to 30.0
-!.. 0.028 came from (.75-.05)/(30.-5.).  This remains ad-hoc and should
-!.. be revisited.
-          if (prs_scw(k).gt.5.0*prs_sde(k) .and. &amp;
-                         prs_sde(k).gt.eps) then
-           r_frac = MIN(30.0D0, prs_scw(k)/prs_sde(k))
-           g_frac = MIN(0.75, 0.05 + (r_frac-5.)*.028)
-           vts_boost(k) = MIN(1.5, 1.1 + (r_frac-5.)*.016)
-           prg_scw(k) = g_frac*prs_scw(k)
-           prs_scw(k) = (1. - g_frac)*prs_scw(k)
-          endif
-
-         else
-
-!..Melt snow and graupel and enhance from collisions with liquid.
-!.. We also need to sublimate snow and graupel if subsaturated.
-          if (L_qs(k)) then
-           prr_sml(k) = tempc*tcond(k)*(t1_qs_me*smo1(k) &amp;
-                      + t2_qs_me*rhof2(k)*vsc2(k)*smof(k))
-           prr_sml(k) = prr_sml(k) + 4218.*olfus*tempc &amp;
-                                   * (prr_rcs(k)+prs_scw(k))
-           prr_sml(k) = MIN(DBLE(rs(k)*odts), prr_sml(k))
-           pnr_sml(k) = smo0(k)/rs(k)*prr_sml(k) * 10.0**(-0.50*tempc)      ! RAIN2M
-           pnr_sml(k) = MIN(DBLE(smo0(k)*odts), pnr_sml(k))
-           if (tempc.gt.3.5 .or. rs(k).lt.0.005E-3) pnr_sml(k)=0.0
-
-           if (ssati(k).lt. 0.) then
-            prs_sde(k) = C_cube*t1_subl*diffu(k)*ssati(k)*rvs &amp;
-                         * (t1_qs_sd*smo1(k) &amp;
-                          + t2_qs_sd*rhof2(k)*vsc2(k)*smof(k))
-            prs_sde(k) = MAX(DBLE(-rs(k)*odts), prs_sde(k))
-           endif
-          endif
-
-          if (L_qg(k)) then
-           prr_gml(k) = tempc*N0_g(k)*tcond(k) &amp;
-                    *(t1_qg_me*ilamg(k)**cge(10) &amp;
-                    + t2_qg_me*rhof2(k)*vsc2(k)*ilamg(k)**cge(11))
-           prr_gml(k) = prr_gml(k) + 4218.*olfus*tempc &amp;
-                                   * (prr_rcg(k)+prg_gcw(k))
-           prr_gml(k) = MIN(DBLE(rg(k)*odts), prr_gml(k))
-           pnr_gml(k) = (N0_g(k) / (cgg(1)*am_g*N0_g(k)/rg(k))**oge1)   &amp;   ! RAIN2M
-                      / rg(k) * prr_gml(k) * 10.0**(-0.35*tempc)
-           if (rg(k).lt.0.005E-3) pnr_gml(k)=0.0
-
-           if (ssati(k).lt. 0.) then
-            prg_gde(k) = C_cube*t1_subl*diffu(k)*ssati(k)*rvs &amp;
-                * N0_g(k) * (t1_qg_sd*ilamg(k)**cge(10) &amp;
-                + t2_qg_sd*vsc2(k)*rhof2(k)*ilamg(k)**cge(11))
-            prg_gde(k) = MAX(DBLE(-rg(k)*odts), prg_gde(k))
-           endif
-          endif
-
-         endif
-
-      enddo
-      endif
-
-!+---+-----------------------------------------------------------------+
-!..Ensure we do not deplete more hydrometeor species than exists.
-!+---+-----------------------------------------------------------------+
-      do k = kts, kte
-
-!..If ice supersaturated, ensure sum of depos growth terms does not
-!.. deplete more vapor than possibly exists.  If subsaturated, limit
-!.. sum of sublimation terms such that vapor does not reproduce ice
-!.. supersat again.
-         sump = pri_inu(k) + pri_ide(k) + prs_ide(k) &amp;
-              + prs_sde(k) + prg_gde(k)
-         rate_max = (qv(k)-qvsi(k))*odts*0.999
-         if ( (sump.gt. eps .and. sump.gt. rate_max) .or. &amp;
-              (sump.lt. -eps .and. sump.lt. rate_max) ) then
-          ratio = rate_max/sump
-          pri_inu(k) = pri_inu(k) * ratio
-          pri_ide(k) = pri_ide(k) * ratio
-          pni_ide(k) = pni_ide(k) * ratio
-          prs_ide(k) = prs_ide(k) * ratio
-          prs_sde(k) = prs_sde(k) * ratio
-          prg_gde(k) = prg_gde(k) * ratio
-         endif
-
-!..Cloud water conservation.
-         sump = -prr_wau(k) - pri_wfz(k) - prr_rcw(k) &amp;
-                - prs_scw(k) - prg_scw(k) - prg_gcw(k)
-         rate_max = -rc(k)*odts
-         if (sump.lt. rate_max .and. L_qc(k)) then
-          ratio = rate_max/sump
-          prr_wau(k) = prr_wau(k) * ratio
-          pri_wfz(k) = pri_wfz(k) * ratio
-          prr_rcw(k) = prr_rcw(k) * ratio
-          prs_scw(k) = prs_scw(k) * ratio
-          prg_scw(k) = prg_scw(k) * ratio
-          prg_gcw(k) = prg_gcw(k) * ratio
-         endif
-
-!..Cloud ice conservation.
-         sump = pri_ide(k) - prs_iau(k) - prs_sci(k) &amp;
-                - pri_rci(k)
-         rate_max = -ri(k)*odts
-         if (sump.lt. rate_max .and. L_qi(k)) then
-          ratio = rate_max/sump
-          pri_ide(k) = pri_ide(k) * ratio
-          prs_iau(k) = prs_iau(k) * ratio
-          prs_sci(k) = prs_sci(k) * ratio
-          pri_rci(k) = pri_rci(k) * ratio
-         endif
-
-!..Rain conservation.
-         sump = -prg_rfz(k) - pri_rfz(k) - prr_rci(k) &amp;
-                + prr_rcs(k) + prr_rcg(k)
-         rate_max = -rr(k)*odts
-         if (sump.lt. rate_max .and. L_qr(k)) then
-          ratio = rate_max/sump
-          prg_rfz(k) = prg_rfz(k) * ratio
-          pri_rfz(k) = pri_rfz(k) * ratio
-          prr_rci(k) = prr_rci(k) * ratio
-          prr_rcs(k) = prr_rcs(k) * ratio
-          prr_rcg(k) = prr_rcg(k) * ratio
-         endif
-
-!..Snow conservation.
-         sump = prs_sde(k) - prs_ihm(k) - prr_sml(k) &amp;
-                + prs_rcs(k)
-         rate_max = -rs(k)*odts
-         if (sump.lt. rate_max .and. L_qs(k)) then
-          ratio = rate_max/sump
-          prs_sde(k) = prs_sde(k) * ratio
-          prs_ihm(k) = prs_ihm(k) * ratio
-          prr_sml(k) = prr_sml(k) * ratio
-          prs_rcs(k) = prs_rcs(k) * ratio
-         endif
-
-!..Graupel conservation.
-         sump = prg_gde(k) - prg_ihm(k) - prr_gml(k) &amp;
-              + prg_rcg(k)
-         rate_max = -rg(k)*odts
-         if (sump.lt. rate_max .and. L_qg(k)) then
-          ratio = rate_max/sump
-          prg_gde(k) = prg_gde(k) * ratio
-          prg_ihm(k) = prg_ihm(k) * ratio
-          prr_gml(k) = prr_gml(k) * ratio
-          prg_rcg(k) = prg_rcg(k) * ratio
-         endif
-
-!..Re-enforce proper mass conservation for subsequent elements in case
-!.. any of the above terms were altered.  Thanks P. Blossey. 2009Sep28
-         pri_ihm(k) = prs_ihm(k) + prg_ihm(k)
-         ratio = MIN( ABS(prr_rcg(k)), ABS(prg_rcg(k)) )
-         prr_rcg(k) = ratio * SIGN(1.0, SNGL(prr_rcg(k)))
-         prg_rcg(k) = -prr_rcg(k)
-         if (temp(k).lt.T_0) then
-            prg_rcs(k) = prs_rcs(k) + prr_rcs(k)
-         else
-            ratio = MIN( ABS(prr_rcs(k)), ABS(prs_rcs(k)) )
-            prr_rcs(k) = ratio * SIGN(1.0, SNGL(prr_rcs(k)))
-            prs_rcs(k) = -prr_rcs(k)
-         endif
-
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Calculate tendencies of all species but constrain the number of ice
-!.. to reasonable values.
-!+---+-----------------------------------------------------------------+
-      do k = kts, kte
-         orho = 1./rho(k)
-         lfus2 = lsub - lvap(k)
-
-!..Water vapor tendency
-         qvten(k) = qvten(k) + (-pri_inu(k) - pri_ide(k) &amp;
-                      - prs_ide(k) - prs_sde(k) - prg_gde(k)) &amp;
-                      * orho
-
-!..Cloud water tendency
-         qcten(k) = qcten(k) + (-prr_wau(k) - pri_wfz(k) &amp;
-                      - prr_rcw(k) - prs_scw(k) - prg_scw(k) &amp;
-                      - prg_gcw(k)) &amp;
-                      * orho
-
-!..Cloud ice mixing ratio tendency
-         qiten(k) = qiten(k) + (pri_inu(k) + pri_ihm(k) &amp;
-                      + pri_wfz(k) + pri_rfz(k) + pri_ide(k) &amp;
-                      - prs_iau(k) - prs_sci(k) - pri_rci(k)) &amp;
-                      * orho
-
-!..Cloud ice number tendency.
-         niten(k) = niten(k) + (pni_inu(k) + pni_ihm(k) &amp;
-                      + pni_wfz(k) + pni_rfz(k) + pni_ide(k) &amp;
-                      - pni_iau(k) - pni_sci(k) - pni_rci(k)) &amp;
-                      * orho
-
-!..Cloud ice mass/number balance; keep mass-wt mean size between
-!.. 20 and 300 microns.  Also no more than 500 xtals per liter.
-         xri=MAX(R1,(qi1d(k) + qiten(k)*dtsave)*rho(k))
-         xni=MAX(1.,(ni1d(k) + niten(k)*dtsave)*rho(k))
-         if (xri.gt. R1) then
-           lami = (am_i*cig(2)*oig1*xni/xri)**obmi
-           ilami = 1./lami
-           xDi = (bm_i + mu_i + 1.) * ilami
-           if (xDi.lt. 20.E-6) then
-            lami = cie(2)/20.E-6
-            xni = MIN(500.D3, cig(1)*oig2*xri/am_i*lami**bm_i)
-            niten(k) = (xni-ni1d(k)*rho(k))*odts*orho
-           elseif (xDi.gt. 300.E-6) then
-            lami = cie(2)/300.E-6
-            xni = cig(1)*oig2*xri/am_i*lami**bm_i
-            niten(k) = (xni-ni1d(k)*rho(k))*odts*orho
-           endif
-         else
-          niten(k) = -ni1d(k)*odts
-         endif
-         xni=MAX(0.,(ni1d(k) + niten(k)*dtsave)*rho(k))
-         if (xni.gt.500.E3) &amp;
-                niten(k) = (500.E3-ni1d(k)*rho(k))*odts*orho
-
-!..Rain tendency
-         qrten(k) = qrten(k) + (prr_wau(k) + prr_rcw(k) &amp;
-                      + prr_sml(k) + prr_gml(k) + prr_rcs(k) &amp;
-                      + prr_rcg(k) - prg_rfz(k) &amp;
-                      - pri_rfz(k) - prr_rci(k)) &amp;
-                      * orho
-
-!..Rain number tendency
-         nrten(k) = nrten(k) + (pnr_wau(k) + pnr_sml(k) + pnr_gml(k)    &amp;
-                      - (pnr_rfz(k) + pnr_rcr(k) + pnr_rcg(k)           &amp;
-                      + pnr_rcs(k) + pnr_rci(k)) )                      &amp;
-                      * orho
-
-!..Rain mass/number balance; keep median volume diameter between
-!.. 37 microns (D0r*0.75) and 2.5 mm.
-         xrr=MAX(R1,(qr1d(k) + qrten(k)*dtsave)*rho(k))
-         xnr=MAX(1.,(nr1d(k) + nrten(k)*dtsave)*rho(k))
-         if (xrr.gt. R1) then
-           lamr = (am_r*crg(3)*org2*xnr/xrr)**obmr
-           mvd_r(k) = (3.0 + mu_r + 0.672) / lamr
-           if (mvd_r(k) .gt. 2.5E-3) then
-              mvd_r(k) = 2.5E-3
-              lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
-              xnr = crg(2)*org3*xrr*lamr**bm_r / am_r
-              nrten(k) = (xnr-nr1d(k)*rho(k))*odts*orho
-           elseif (mvd_r(k) .lt. D0r*0.75) then
-              mvd_r(k) = D0r*0.75
-              lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
-              xnr = crg(2)*org3*xrr*lamr**bm_r / am_r
-              nrten(k) = (xnr-nr1d(k)*rho(k))*odts*orho
-           endif
-         else
-           qrten(k) = -qr1d(k)*odts
-           nrten(k) = -nr1d(k)*odts
-         endif
-
-!..Snow tendency
-         qsten(k) = qsten(k) + (prs_iau(k) + prs_sde(k) &amp;
-                      + prs_sci(k) + prs_scw(k) + prs_rcs(k) &amp;
-                      + prs_ide(k) - prs_ihm(k) - prr_sml(k)) &amp;
-                      * orho
-
-!..Graupel tendency
-         qgten(k) = qgten(k) + (prg_scw(k) + prg_rfz(k) &amp;
-                      + prg_gde(k) + prg_rcg(k) + prg_gcw(k) &amp;
-                      + prg_rci(k) + prg_rcs(k) - prg_ihm(k) &amp;
-                      - prr_gml(k)) &amp;
-                      * orho
-
-!..Temperature tendency
-         if (temp(k).lt.T_0) then
-          tten(k) = tten(k) &amp;
-                    + ( lsub*ocp(k)*(pri_inu(k) + pri_ide(k) &amp;
-                                     + prs_ide(k) + prs_sde(k) &amp;
-                                     + prg_gde(k)) &amp;
-                     + lfus2*ocp(k)*(pri_wfz(k) + pri_rfz(k) &amp;
-                                     + prg_rfz(k) + prs_scw(k) &amp;
-                                     + prg_scw(k) + prg_gcw(k) &amp;
-                                     + prg_rcs(k) + prs_rcs(k) &amp;
-                                     + prr_rci(k) + prg_rcg(k)) &amp;
-                       )*orho * (1-IFDRY)
-         else
-          tten(k) = tten(k) &amp;
-                    + ( lfus*ocp(k)*(-prr_sml(k) - prr_gml(k) &amp;
-                                     - prr_rcg(k) - prr_rcs(k)) &amp;
-                      + lsub*ocp(k)*(prs_sde(k) + prg_gde(k)) &amp;
-                       )*orho * (1-IFDRY)
-         endif
-
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Update variables for TAU+1 before condensation &amp; sedimention.
-!+---+-----------------------------------------------------------------+
-      do k = kts, kte
-         temp(k) = t1d(k) + DT*tten(k)
-         otemp = 1./temp(k)
-         tempc = temp(k) - 273.15
-         qv(k) = MAX(1.E-10, qv1d(k) + DT*qvten(k))
-         rho(k) = 0.622*pres(k)/(R*temp(k)*(qv(k)+0.622))
-         rhof(k) = SQRT(RHO_NOT/rho(k))
-         rhof2(k) = SQRT(rhof(k))
-         qvs(k) = rslf(pres(k), temp(k))
-         ssatw(k) = qv(k)/qvs(k) - 1.
-         if (abs(ssatw(k)).lt. eps) ssatw(k) = 0.0
-         diffu(k) = 2.11E-5*(temp(k)/273.15)**1.94 * (101325./pres(k))
-         if (tempc .ge. 0.0) then
-            visco(k) = (1.718+0.0049*tempc)*1.0E-5
-         else
-            visco(k) = (1.718+0.0049*tempc-1.2E-5*tempc*tempc)*1.0E-5
-         endif
-         vsc2(k) = SQRT(rho(k)/visco(k))
-         lvap(k) = lvap0 + (2106.0 - 4218.0)*tempc
-         tcond(k) = (5.69 + 0.0168*tempc)*1.0E-5 * 418.936
-         ocp(k) = 1./(Cp*(1.+0.887*qv(k)))
-         lvt2(k)=lvap(k)*lvap(k)*ocp(k)*oRv*otemp*otemp
-
-         if ((qc1d(k) + qcten(k)*DT) .gt. R1) then
-            rc(k) = (qc1d(k) + qcten(k)*DT)*rho(k)
-            L_qc(k) = .true.
-         else
-            rc(k) = R1
-            L_qc(k) = .false.
-         endif
-
-         if ((qi1d(k) + qiten(k)*DT) .gt. R1) then
-            ri(k) = (qi1d(k) + qiten(k)*DT)*rho(k)
-            ni(k) = MAX(1., (ni1d(k) + niten(k)*DT)*rho(k))
-            L_qi(k) = .true. 
-         else
-            ri(k) = R1
-            ni(k) = 1.
-            L_qi(k) = .false.
-         endif
-
-         if ((qr1d(k) + qrten(k)*DT) .gt. R1) then
-            rr(k) = (qr1d(k) + qrten(k)*DT)*rho(k)
-            nr(k) = MAX(1., (nr1d(k) + nrten(k)*DT)*rho(k))
-            L_qr(k) = .true.
-            lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr
-            mvd_r(k) = (3.0 + mu_r + 0.672) / lamr
-            if (mvd_r(k) .gt. 2.5E-3) then
-               mvd_r(k) = 2.5E-3
-               lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
-               nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r
-            elseif (mvd_r(k) .lt. D0r*0.75) then
-               mvd_r(k) = D0r*0.75
-               lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
-               nr(k) = crg(2)*org3*rr(k)*lamr**bm_r / am_r
-            endif
-         else
-            rr(k) = R1
-            nr(k) = 1.
-            L_qr(k) = .false.
-         endif
-               
-         if ((qs1d(k) + qsten(k)*DT) .gt. R1) then
-            rs(k) = (qs1d(k) + qsten(k)*DT)*rho(k)
-            L_qs(k) = .true.
-         else
-            rs(k) = R1
-            L_qs(k) = .false.
-         endif
-
-         if ((qg1d(k) + qgten(k)*DT) .gt. R1) then
-            rg(k) = (qg1d(k) + qgten(k)*DT)*rho(k)
-            L_qg(k) = .true.
-         else
-            rg(k) = R1
-            L_qg(k) = .false.
-         endif
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..With tendency-updated mixing ratios, recalculate snow moments and
-!.. intercepts/slopes of graupel and rain.
-!+---+-----------------------------------------------------------------+
-      if (.not. iiwarm) then
-      do k = kts, kte
-         if (.not. L_qs(k)) CYCLE
-         tc0 = MIN(-0.1, temp(k)-273.15)
-         smob(k) = rs(k)*oams
-
-!..All other moments based on reference, 2nd moment.  If bm_s.ne.2,
-!.. then we must compute actual 2nd moment and use as reference.
-         if (bm_s.gt.(2.0-1.e-3) .and. bm_s.lt.(2.0+1.e-3)) then
-            smo2(k) = smob(k)
-         else
-            loga_ = sa(1) + sa(2)*tc0 + sa(3)*bm_s &amp;
-               + sa(4)*tc0*bm_s + sa(5)*tc0*tc0 &amp;
-               + sa(6)*bm_s*bm_s + sa(7)*tc0*tc0*bm_s &amp;
-               + sa(8)*tc0*bm_s*bm_s + sa(9)*tc0*tc0*tc0 &amp;
-               + sa(10)*bm_s*bm_s*bm_s
-            a_ = 10.0**loga_
-            b_ = sb(1) + sb(2)*tc0 + sb(3)*bm_s &amp;
-               + sb(4)*tc0*bm_s + sb(5)*tc0*tc0 &amp;
-               + sb(6)*bm_s*bm_s + sb(7)*tc0*tc0*bm_s &amp;
-               + sb(8)*tc0*bm_s*bm_s + sb(9)*tc0*tc0*tc0 &amp;
-               + sb(10)*bm_s*bm_s*bm_s
-            smo2(k) = (smob(k)/a_)**(1./b_)
-         endif
-
-!..Calculate bm_s+1 (th) moment.  Useful for diameter calcs.
-         loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(1) &amp;
-               + sa(4)*tc0*cse(1) + sa(5)*tc0*tc0 &amp;
-               + sa(6)*cse(1)*cse(1) + sa(7)*tc0*tc0*cse(1) &amp;
-               + sa(8)*tc0*cse(1)*cse(1) + sa(9)*tc0*tc0*tc0 &amp;
-               + sa(10)*cse(1)*cse(1)*cse(1)
-         a_ = 10.0**loga_
-         b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(1) + sb(4)*tc0*cse(1) &amp;
-              + sb(5)*tc0*tc0 + sb(6)*cse(1)*cse(1) &amp;
-              + sb(7)*tc0*tc0*cse(1) + sb(8)*tc0*cse(1)*cse(1) &amp;
-              + sb(9)*tc0*tc0*tc0 + sb(10)*cse(1)*cse(1)*cse(1)
-         smoc(k) = a_ * smo2(k)**b_
-
-!..Calculate bm_s+bv_s (th) moment.  Useful for sedimentation.
-         loga_ = sa(1) + sa(2)*tc0 + sa(3)*cse(14) &amp;
-               + sa(4)*tc0*cse(14) + sa(5)*tc0*tc0 &amp;
-               + sa(6)*cse(14)*cse(14) + sa(7)*tc0*tc0*cse(14) &amp;
-               + sa(8)*tc0*cse(14)*cse(14) + sa(9)*tc0*tc0*tc0 &amp;
-               + sa(10)*cse(14)*cse(14)*cse(14)
-         a_ = 10.0**loga_
-         b_ = sb(1)+ sb(2)*tc0 + sb(3)*cse(14) + sb(4)*tc0*cse(14) &amp;
-              + sb(5)*tc0*tc0 + sb(6)*cse(14)*cse(14) &amp;
-              + sb(7)*tc0*tc0*cse(14) + sb(8)*tc0*cse(14)*cse(14) &amp;
-              + sb(9)*tc0*tc0*tc0 + sb(10)*cse(14)*cse(14)*cse(14)
-         smod(k) = a_ * smo2(k)**b_
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Calculate y-intercept, slope values for graupel.
-!+---+-----------------------------------------------------------------+
-      do k = kte, kts, -1
-         N0_exp = (gonv_max-gonv_min)*0.5D0                             &amp;
-                * tanh((0.01E-3-(rc(k)+rr(k)))/0.75E-3)                 &amp;
-                + (gonv_max+gonv_min)*0.5D0
-         lam_exp = (N0_exp*am_g*cgg(1)/rg(k))**oge1
-         lamg = lam_exp * (cgg(3)*ogg2*ogg1)**obmg
-         ilamg(k) = 1./lamg
-         N0_g(k) = N0_exp/(cgg(2)*lam_exp) * lamg**cge(2)
-      enddo
-
-      endif
-
-!+---+-----------------------------------------------------------------+
-!..Calculate y-intercept, slope values for rain.
-!+---+-----------------------------------------------------------------+
-      do k = kte, kts, -1
-         lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr
-         ilamr(k) = 1./lamr
-         mvd_r(k) = (3.0 + mu_r + 0.672) / lamr
-         N0_r(k) = nr(k)*org2*lamr**cre(2)
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Cloud water condensation and evaporation.  Newly formulated using
-!.. Newton-Raphson iterations (3 should suffice) as provided by B. Hall.
-!+---+-----------------------------------------------------------------+
-      do k = kts, kte
-         if ( (ssatw(k).gt. eps) .or. (ssatw(k).lt. -eps .and. &amp;
-                   L_qc(k)) ) then
-          clap = (qv(k)-qvs(k))/(1. + lvt2(k)*qvs(k))
-          do n = 1, 3
-             fcd = qvs(k)* EXP(lvt2(k)*clap) - qv(k) + clap
-             dfcd = qvs(k)*lvt2(k)* EXP(lvt2(k)*clap) + 1.
-             clap = clap - fcd/dfcd
-          enddo
-          xrc = rc(k) + clap
-          if (xrc.gt. 0.0) then
-             prw_vcd(k) = clap*odt
-          else
-             prw_vcd(k) = -rc(k)/rho(k)*odt
-          endif
-
-          qcten(k) = qcten(k) + prw_vcd(k)
-          qvten(k) = qvten(k) - prw_vcd(k)
-          tten(k) = tten(k) + lvap(k)*ocp(k)*prw_vcd(k)*(1-IFDRY)
-          rc(k) = MAX(R1, (qc1d(k) + DT*qcten(k))*rho(k))
-          qv(k) = MAX(1.E-10, qv1d(k) + DT*qvten(k))
-          temp(k) = t1d(k) + DT*tten(k)
-          rho(k) = 0.622*pres(k)/(R*temp(k)*(qv(k)+0.622))
-          qvs(k) = rslf(pres(k), temp(k))
-          ssatw(k) = qv(k)/qvs(k) - 1.
-         endif
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!.. If still subsaturated, allow rain to evaporate, following
-!.. Srivastava &amp; Coen (1992).
-!+---+-----------------------------------------------------------------+
-      do k = kts, kte
-         if ( (ssatw(k).lt. -eps) .and. L_qr(k) &amp;
-                     .and. (.not.(prw_vcd(k).gt. 0.)) ) then
-          tempc = temp(k) - 273.15
-          otemp = 1./temp(k)
-          rhof(k) = SQRT(RHO_NOT/rho(k))
-          rhof2(k) = SQRT(rhof(k))
-          diffu(k) = 2.11E-5*(temp(k)/273.15)**1.94 * (101325./pres(k))
-          if (tempc .ge. 0.0) then
-             visco(k) = (1.718+0.0049*tempc)*1.0E-5
-          else
-             visco(k) = (1.718+0.0049*tempc-1.2E-5*tempc*tempc)*1.0E-5
-          endif
-          vsc2(k) = SQRT(rho(k)/visco(k))
-          lvap(k) = lvap0 + (2106.0 - 4218.0)*tempc
-          tcond(k) = (5.69 + 0.0168*tempc)*1.0E-5 * 418.936
-          ocp(k) = 1./(Cp*(1.+0.887*qv(k)))
-
-          rvs = rho(k)*qvs(k)
-          rvs_p = rvs*otemp*(lvap(k)*otemp*oRv - 1.)
-          rvs_pp = rvs * ( otemp*(lvap(k)*otemp*oRv - 1.) &amp;
-                          *otemp*(lvap(k)*otemp*oRv - 1.) &amp;
-                          + (-2.*lvap(k)*otemp*otemp*otemp*oRv) &amp;
-                          + otemp*otemp)
-          gamsc = lvap(k)*diffu(k)/tcond(k) * rvs_p
-          alphsc = 0.5*(gamsc/(1.+gamsc))*(gamsc/(1.+gamsc)) &amp;
-                     * rvs_pp/rvs_p * rvs/rvs_p
-          alphsc = MAX(1.E-9, alphsc)
-          xsat = ssatw(k)
-          if (xsat.lt. -1.E-9) xsat = -1.E-9
-          t1_evap = 2.*PI*( 1.0 - alphsc*xsat  &amp;
-                 + 2.*alphsc*alphsc*xsat*xsat  &amp;
-                 - 5.*alphsc*alphsc*alphsc*xsat*xsat*xsat ) &amp;
-                 / (1.+gamsc)
-
-          lamr = 1./ilamr(k)
-          prv_rev(k) = t1_evap*diffu(k)*(-ssatw(k))*N0_r(k)*rvs &amp;
-              * (t1_qr_ev*ilamr(k)**cre(10) &amp;
-              + t2_qr_ev*vsc2(k)*rhof2(k)*((lamr+0.5*fv_r)**(-cre(11))))
-          prv_rev(k) = MIN(DBLE(rr(k)/rho(k)*odts),                     &amp;
-                               prv_rev(k)/rho(k))
-          pnr_rev(k) = MIN(DBLE(nr(k)*0.99/rho(k)*odts),                &amp;   ! RAIN2M
-                       prv_rev(k) * nr(k)/rr(k))
-
-          qrten(k) = qrten(k) - prv_rev(k)
-          qvten(k) = qvten(k) + prv_rev(k)
-          nrten(k) = nrten(k) - pnr_rev(k)
-          tten(k) = tten(k) - lvap(k)*ocp(k)*prv_rev(k)*(1-IFDRY)
-
-          rr(k) = MAX(R1, (qr1d(k) + DT*qrten(k))*rho(k))
-          qv(k) = MAX(1.E-10, qv1d(k) + DT*qvten(k))
-          nr(k) = MAX(1.,(nr1d(k) + DT*nrten(k))*rho(k))
-          temp(k) = t1d(k) + DT*tten(k)
-          rho(k) = 0.622*pres(k)/(R*temp(k)*(qv(k)+0.622))
-         endif
-
-!+---+-----------------------------------------------------------------+
-!     if( debug_flag .and. k.lt.42) then
-!        if (k.eq.1) write(mp_debug,*) 'DEBUG-GT:      prg_scw,    prg_rfz,       prg_gde,       prg_rcg,       prg_gcw,       prg_rci,       prg_rcs,       prg_ihm,       prr_gml,       rg,            N0_g,          ilamg'
-!        if (k.eq.1) CALL wrf_debug(0, mp_debug)
-!        write(mp_debug, 'a, i2, 1x, 12(1x,e13.6,1x)')   '  GT,k= ', k, &amp;
-!        prg_scw(k), prg_rfz(k), prg_gde(k), prg_rcg(k), prg_gcw(k),    &amp;
-!        prg_rci(k), prg_rcs(k), prg_ihm(k), prr_gml(k),                &amp;
-!        rg(k), N0_g(k), ilamg(k)
-!        CALL wrf_debug(0, mp_debug)
-!     endif
-!+---+-----------------------------------------------------------------+
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!..Find max terminal fallspeed (distribution mass-weighted mean
-!.. velocity) and use it to determine if we need to split the timestep
-!.. (var nstep&gt;1).  Either way, only bother to do sedimentation below
-!.. 1st level that contains any sedimenting particles (k=ksed1 on down).
-!.. New in v3.0+ is computing separate for rain, ice, snow, and
-!.. graupel species thus making code faster with credit to J. Schmidt.
-!+---+-----------------------------------------------------------------+
-      nstep = 0
-      onstep(:) = 1.0
-      ksed1(:) = 1
-      do k = kte+1, kts, -1
-         vtrk(k) = 0.
-         vtnrk(k) = 0.
-         vtik(k) = 0.
-         vtnik(k) = 0.
-         vtsk(k) = 0.
-         vtgk(k) = 0.
-      enddo
-      do k = kte, kts, -1
-         vtr = 0.
-         rhof(k) = SQRT(RHO_NOT/rho(k))
-
-         if (rr(k).gt. R2) then
-          lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr
-          vtr = rhof(k)*av_r*crg(6)*org3 * lamr**cre(3)                 &amp;
-                      *((lamr+fv_r)**(-cre(6)))
-          vtrk(k) = vtr
-! First below is technically correct:
-!         vtr = rhof(k)*av_r*crg(5)*org2 * lamr**cre(2)                 &amp;
-!                     *((lamr+fv_r)**(-cre(5)))
-! Test: make number fall faster (but still slower than mass)
-! Goal: less prominent size sorting
-          vtr = rhof(k)*av_r*crg(7)/crg(12) * lamr**cre(12)             &amp;
-                      *((lamr+fv_r)**(-cre(7)))
-          vtnrk(k) = vtr
-         endif
-
-         if (MAX(vtrk(k),vtnrk(k)) .gt. 1.E-3) then
-            ksed1(1) = MAX(ksed1(1), k)
-            delta_tp = dzq(k)/(MAX(vtrk(k),vtnrk(k)))
-            nstep = MAX(nstep, INT(DT/delta_tp + 1.))
-         endif
-      enddo
-      if (ksed1(1) .eq. kte) ksed1(1) = kte-1
-      if (nstep .gt. 0) onstep(1) = 1./REAL(nstep)
-
-!+---+-----------------------------------------------------------------+
-
-      if (.not. iiwarm) then
-
-       nstep = 0
-       do k = kte, kts, -1
-          vti = 0.
-
-          if (ri(k).gt. R2) then
-           lami = (am_i*cig(2)*oig1*ni(k)/ri(k))**obmi
-           ilami = 1./lami
-           vti = rhof(k)*av_i*cig(3)*oig2 * ilami**bv_i
-           vtik(k) = vti
-           vti = rhof(k)*av_i*cig(4)*oig1 * ilami**bv_i
-           vtnik(k) = vti
-          endif
-
-          if (vtik(k) .gt. 1.E-3) then
-             ksed1(2) = MAX(ksed1(2), k)
-             delta_tp = dzq(k)/vtik(k)
-             nstep = MAX(nstep, INT(DT/delta_tp + 1.))
-          endif
-       enddo
-       if (ksed1(2) .eq. kte) ksed1(2) = kte-1
-       if (nstep .gt. 0) onstep(2) = 1./REAL(nstep)
-
-!+---+-----------------------------------------------------------------+
-
-       nstep = 0
-       do k = kte, kts, -1
-          vts = 0.
-
-          if (rs(k).gt. R2) then
-           xDs = smoc(k) / smob(k)
-           Mrat = 1./xDs
-           ils1 = 1./(Mrat*Lam0 + fv_s)
-           ils2 = 1./(Mrat*Lam1 + fv_s)
-           t1_vts = Kap0*csg(4)*ils1**cse(4)
-           t2_vts = Kap1*Mrat**mu_s*csg(10)*ils2**cse(10)
-           ils1 = 1./(Mrat*Lam0)
-           ils2 = 1./(Mrat*Lam1)
-           t3_vts = Kap0*csg(1)*ils1**cse(1)
-           t4_vts = Kap1*Mrat**mu_s*csg(7)*ils2**cse(7)
-           vts = rhof(k)*av_s * (t1_vts+t2_vts)/(t3_vts+t4_vts)
-           if (temp(k).gt. T_0) then
-            vtsk(k) = MAX(vts*vts_boost(k), vtrk(k))
-           else
-            vtsk(k) = vts*vts_boost(k)
-           endif
-          endif
-
-          if (vtsk(k) .gt. 1.E-3) then
-             ksed1(3) = MAX(ksed1(3), k)
-             delta_tp = dzq(k)/vtsk(k)
-             nstep = MAX(nstep, INT(DT/delta_tp + 1.))
-          endif
-       enddo
-       if (ksed1(3) .eq. kte) ksed1(3) = kte-1
-       if (nstep .gt. 0) onstep(3) = 1./REAL(nstep)
-
-!+---+-----------------------------------------------------------------+
-
-       nstep = 0
-       do k = kte, kts, -1
-          vtg = 0.
-
-          if (rg(k).gt. R2) then
-           vtg = rhof(k)*av_g*cgg(6)*ogg3 * ilamg(k)**bv_g
-           if (temp(k).gt. T_0) then
-            vtgk(k) = MAX(vtg, vtrk(k))
-           else
-            vtgk(k) = vtg
-           endif
-          endif
-
-          if (vtgk(k) .gt. 1.E-3) then
-             ksed1(4) = MAX(ksed1(4), k)
-             delta_tp = dzq(k)/vtgk(k)
-             nstep = MAX(nstep, INT(DT/delta_tp + 1.))
-          endif
-       enddo
-       if (ksed1(4) .eq. kte) ksed1(4) = kte-1
-       if (nstep .gt. 0) onstep(4) = 1./REAL(nstep)
-      endif
-
-!+---+-----------------------------------------------------------------+
-!..Sedimentation of mixing ratio is the integral of v(D)*m(D)*N(D)*dD,
-!.. whereas neglect m(D) term for number concentration.  Therefore,
-!.. cloud ice has proper differential sedimentation.
-!.. New in v3.0+ is computing separate for rain, ice, snow, and
-!.. graupel species thus making code faster with credit to J. Schmidt.
-!+---+-----------------------------------------------------------------+
-
-      nstep = NINT(1./onstep(1))
-      do n = 1, nstep
-         do k = kte, kts, -1
-            sed_r(k) = vtrk(k)*rr(k)
-            sed_n(k) = vtnrk(k)*nr(k)
-         enddo
-         k = kte
-         odzq = 1./dzq(k)
-         orho = 1./rho(k)
-         qrten(k) = qrten(k) - sed_r(k)*odzq*onstep(1)*orho
-         nrten(k) = nrten(k) - sed_n(k)*odzq*onstep(1)*orho
-         rr(k) = MAX(R1, rr(k) - sed_r(k)*odzq*DT*onstep(1))
-         nr(k) = MAX(1., nr(k) - sed_n(k)*odzq*DT*onstep(1))
-         do k = ksed1(1), kts, -1
-            odzq = 1./dzq(k)
-            orho = 1./rho(k)
-            qrten(k) = qrten(k) + (sed_r(k+1)-sed_r(k)) &amp;
-                                               *odzq*onstep(1)*orho
-            nrten(k) = nrten(k) + (sed_n(k+1)-sed_n(k)) &amp;
-                                               *odzq*onstep(1)*orho
-            rr(k) = MAX(R1, rr(k) + (sed_r(k+1)-sed_r(k)) &amp;
-                                           *odzq*DT*onstep(1))
-            nr(k) = MAX(1., nr(k) + (sed_n(k+1)-sed_n(k)) &amp;
-                                           *odzq*DT*onstep(1))
-         enddo
-
-         pptrain = pptrain + sed_r(kts)*DT*onstep(1)
-      enddo
-
-!+---+-----------------------------------------------------------------+
-
-      nstep = NINT(1./onstep(2))
-      do n = 1, nstep
-         do k = kte, kts, -1
-            sed_i(k) = vtik(k)*ri(k)
-            sed_n(k) = vtnik(k)*ni(k)
-         enddo
-         k = kte
-         odzq = 1./dzq(k)
-         orho = 1./rho(k)
-         qiten(k) = qiten(k) - sed_i(k)*odzq*onstep(2)*orho
-         niten(k) = niten(k) - sed_n(k)*odzq*onstep(2)*orho
-         ri(k) = MAX(R1, ri(k) - sed_i(k)*odzq*DT*onstep(2))
-         ni(k) = MAX(1., ni(k) - sed_n(k)*odzq*DT*onstep(2))
-         do k = ksed1(2), kts, -1
-            odzq = 1./dzq(k)
-            orho = 1./rho(k)
-            qiten(k) = qiten(k) + (sed_i(k+1)-sed_i(k)) &amp;
-                                               *odzq*onstep(2)*orho
-            niten(k) = niten(k) + (sed_n(k+1)-sed_n(k)) &amp;
-                                               *odzq*onstep(2)*orho
-            ri(k) = MAX(R1, ri(k) + (sed_i(k+1)-sed_i(k)) &amp;
-                                           *odzq*DT*onstep(2))
-            ni(k) = MAX(1., ni(k) + (sed_n(k+1)-sed_n(k)) &amp;
-                                           *odzq*DT*onstep(2))
-         enddo
-
-         pptice = pptice + sed_i(kts)*DT*onstep(2)
-      enddo
-
-!+---+-----------------------------------------------------------------+
-
-      nstep = NINT(1./onstep(3))
-      do n = 1, nstep
-         do k = kte, kts, -1
-            sed_s(k) = vtsk(k)*rs(k)
-         enddo
-         k = kte
-         odzq = 1./dzq(k)
-         orho = 1./rho(k)
-         qsten(k) = qsten(k) - sed_s(k)*odzq*onstep(3)*orho
-         rs(k) = MAX(R1, rs(k) - sed_s(k)*odzq*DT*onstep(3))
-         do k = ksed1(3), kts, -1
-            odzq = 1./dzq(k)
-            orho = 1./rho(k)
-            qsten(k) = qsten(k) + (sed_s(k+1)-sed_s(k)) &amp;
-                                               *odzq*onstep(3)*orho
-            rs(k) = MAX(R1, rs(k) + (sed_s(k+1)-sed_s(k)) &amp;
-                                           *odzq*DT*onstep(3))
-         enddo
-
-         pptsnow = pptsnow + sed_s(kts)*DT*onstep(3)
-      enddo
-
-!+---+-----------------------------------------------------------------+
-
-      nstep = NINT(1./onstep(4))
-      do n = 1, nstep
-         do k = kte, kts, -1
-            sed_g(k) = vtgk(k)*rg(k)
-         enddo
-         k = kte
-         odzq = 1./dzq(k)
-         orho = 1./rho(k)
-         qgten(k) = qgten(k) - sed_g(k)*odzq*onstep(4)*orho
-         rg(k) = MAX(R1, rg(k) - sed_g(k)*odzq*DT*onstep(4))
-         do k = ksed1(4), kts, -1
-            odzq = 1./dzq(k)
-            orho = 1./rho(k)
-            qgten(k) = qgten(k) + (sed_g(k+1)-sed_g(k)) &amp;
-                                               *odzq*onstep(4)*orho
-            rg(k) = MAX(R1, rg(k) + (sed_g(k+1)-sed_g(k)) &amp;
-                                           *odzq*DT*onstep(4))
-         enddo
-
-         pptgraul = pptgraul + sed_g(kts)*DT*onstep(4)
-      enddo
-
-!+---+-----------------------------------------------------------------+
-!.. Instantly melt any cloud ice into cloud water if above 0C and
-!.. instantly freeze any cloud water found below HGFR.
-!+---+-----------------------------------------------------------------+
-      if (.not. iiwarm) then
-      do k = kts, kte
-         xri = MAX(0.0, qi1d(k) + qiten(k)*DT)
-         if ( (temp(k).gt. T_0) .and. (xri.gt. 0.0) ) then
-          qcten(k) = qcten(k) + xri*odt
-          qiten(k) = qiten(k) - xri*odt
-          niten(k) = -ni1d(k)*odt
-          tten(k) = tten(k) - lfus*ocp(k)*xri*odt*(1-IFDRY)
-         endif
-
-         xrc = MAX(0.0, qc1d(k) + qcten(k)*DT)
-         if ( (temp(k).lt. HGFR) .and. (xrc.gt. 0.0) ) then
-          lfus2 = lsub - lvap(k)
-          qiten(k) = qiten(k) + xrc*odt
-          niten(k) = niten(k) + xrc/xm0i * odt
-          qcten(k) = qcten(k) - xrc*odt
-          tten(k) = tten(k) + lfus2*ocp(k)*xrc*odt*(1-IFDRY)
-         endif
-      enddo
-      endif
-
-!+---+-----------------------------------------------------------------+
-!.. All tendencies computed, apply and pass back final values to parent.
-!+---+-----------------------------------------------------------------+
-      do k = kts, kte
-         t1d(k)  = t1d(k) + tten(k)*DT
-         qv1d(k) = MAX(1.E-10, qv1d(k) + qvten(k)*DT)
-         qc1d(k) = qc1d(k) + qcten(k)*DT
-         if (qc1d(k) .le. R1) qc1d(k) = 0.0
-         qi1d(k) = qi1d(k) + qiten(k)*DT
-         ni1d(k) = ni1d(k) + niten(k)*DT
-         if (qi1d(k) .le. R1) then
-           qi1d(k) = 0.0
-           ni1d(k) = 0.0
-         else
-           if (ni1d(k) .gt. 1.0) then
-            lami = (am_i*cig(2)*oig1*ni1d(k)/qi1d(k))**obmi
-            ilami = 1./lami
-            xDi = (bm_i + mu_i + 1.) * ilami
-            if (xDi.lt. 20.E-6) then
-             lami = cie(2)/20.E-6
-            elseif (xDi.gt. 300.E-6) then
-             lami = cie(2)/300.E-6
-            endif
-           else
-            lami = cie(2)/D0s
-           endif
-           ni1d(k) = MIN(cig(1)*oig2*qi1d(k)/am_i*lami**bm_i,           &amp;
-                         500.D3/rho(k))
-         endif
-         qr1d(k) = qr1d(k) + qrten(k)*DT
-         nr1d(k) = nr1d(k) + nrten(k)*DT
-         if (qr1d(k) .le. R1) then
-           qr1d(k) = 0.0
-           nr1d(k) = 0.0
-         else
-           if (nr1d(k) .gt. 1.0) then
-            lamr = (am_r*crg(3)*org2*nr1d(k)/qr1d(k))**obmr
-            mvd_r(k) = (3.0 + mu_r + 0.672) / lamr
-            if (mvd_r(k) .gt. 2.5E-3) then
-               mvd_r(k) = 2.5E-3
-            elseif (mvd_r(k) .lt. D0r*0.75) then
-               mvd_r(k) = D0r*0.75
-            endif
-           else
-            if (qr1d(k) .gt. R2) then
-               mvd_r(k) = 2.5E-3
-            else
-               mvd_r(k) = 2.5E-3 / 3.0**(ALOG10(R2)-ALOG10(qr1d(k)))
-            endif
-           endif
-           lamr = (3.0 + mu_r + 0.672) / mvd_r(k)
-           nr1d(k) = crg(2)*org3*qr1d(k)*lamr**bm_r / am_r
-         endif
-         qs1d(k) = qs1d(k) + qsten(k)*DT
-         if (qs1d(k) .le. R1) qs1d(k) = 0.0
-         qg1d(k) = qg1d(k) + qgten(k)*DT
-         if (qg1d(k) .le. R1) qg1d(k) = 0.0
-      enddo
-
-      end subroutine mp_thompson
-!+---+-----------------------------------------------------------------+
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!..Creation of the lookup tables and support functions found below here.
-!+---+-----------------------------------------------------------------+
-!..Rain collecting graupel (and inverse).  Explicit CE integration.
-!+---+-----------------------------------------------------------------+
-
-      subroutine qr_acr_qg
-
-      implicit none
-
-!..Local variables
-      INTEGER:: i, j, k, m, n, n2
-      INTEGER:: km, km_s, km_e
-      DOUBLE PRECISION, DIMENSION(nbg):: vg, N_g
-      DOUBLE PRECISION, DIMENSION(nbr):: vr, N_r
-      DOUBLE PRECISION:: N0_r, N0_g, lam_exp, lamg, lamr
-      DOUBLE PRECISION:: massg, massr, dvg, dvr, t1, t2, z1, z2, y1, y2
-
-!+---+
-
-      do n2 = 1, nbr
-!        vr(n2) = av_r*Dr(n2)**bv_r * DEXP(-fv_r*Dr(n2))
-         vr(n2) = -0.1021 + 4.932E3*Dr(n2) - 0.9551E6*Dr(n2)*Dr(n2)     &amp;
-              + 0.07934E9*Dr(n2)*Dr(n2)*Dr(n2)                          &amp;
-              - 0.002362E12*Dr(n2)*Dr(n2)*Dr(n2)*Dr(n2)
-      enddo
-      do n = 1, nbg
-         vg(n) = av_g*Dg(n)**bv_g
-      enddo
-
-!..Note values returned from wrf_dm_decomp1d are zero-based, add 1 for
-!.. fortran indices.  J. Michalakes, 2009Oct30.
-
-#if ( defined( DM_PARALLEL ) &amp;&amp; ( ! defined( STUBMPI ) ) )
-      CALL wrf_dm_decomp1d ( ntb_r*ntb_r1, km_s, km_e )
-#else
-      km_s = 0
-      km_e = ntb_r*ntb_r1 - 1
-#endif
-
-      do km = km_s, km_e
-         m = km / ntb_r1 + 1
-         k = mod( km , ntb_r1 ) + 1
-
-         lam_exp = (N0r_exp(k)*am_r*crg(1)/r_r(m))**ore1
-         lamr = lam_exp * (crg(3)*org2*org1)**obmr
-         N0_r = N0r_exp(k)/(crg(2)*lam_exp) * lamr**cre(2)
-         do n2 = 1, nbr
-            N_r(n2) = N0_r*Dr(n2)**mu_r *DEXP(-lamr*Dr(n2))*dtr(n2)
-         enddo
-
-         do j = 1, ntb_g
-         do i = 1, ntb_g1
-            lam_exp = (N0g_exp(i)*am_g*cgg(1)/r_g(j))**oge1
-            lamg = lam_exp * (cgg(3)*ogg2*ogg1)**obmg
-            N0_g = N0g_exp(i)/(cgg(2)*lam_exp) * lamg**cge(2)
-            do n = 1, nbg
-               N_g(n) = N0_g*Dg(n)**mu_g * DEXP(-lamg*Dg(n))*dtg(n)
-            enddo
-
-            t1 = 0.0d0
-            t2 = 0.0d0
-            z1 = 0.0d0
-            z2 = 0.0d0
-            y1 = 0.0d0
-            y2 = 0.0d0
-            do n2 = 1, nbr
-               massr = am_r * Dr(n2)**bm_r
-               do n = 1, nbg
-                  massg = am_g * Dg(n)**bm_g
-
-                  dvg = 0.5d0*((vr(n2) - vg(n)) + DABS(vr(n2)-vg(n)))
-                  dvr = 0.5d0*((vg(n) - vr(n2)) + DABS(vg(n)-vr(n2)))
-
-                  t1 = t1+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) &amp;
-                      *dvg*massg * N_g(n)* N_r(n2)
-                  z1 = z1+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) &amp;
-                      *dvg*massr * N_g(n)* N_r(n2)
-                  y1 = y1+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) &amp;
-                      *dvg       * N_g(n)* N_r(n2)
-
-                  t2 = t2+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) &amp;
-                      *dvr*massr * N_g(n)* N_r(n2)
-                  y2 = y2+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) &amp;
-                      *dvr       * N_g(n)* N_r(n2)
-                  z2 = z2+ PI*.25*Ef_rg*(Dg(n)+Dr(n2))*(Dg(n)+Dr(n2)) &amp;
-                      *dvr*massg * N_g(n)* N_r(n2)
-               enddo
- 97            continue
-            enddo
-            tcg_racg(i,j,k,m) = t1
-            tmr_racg(i,j,k,m) = DMIN1(z1, r_r(m)*1.0d0)
-            tcr_gacr(i,j,k,m) = t2
-            tmg_gacr(i,j,k,m) = z2
-            tnr_racg(i,j,k,m) = y1
-            tnr_gacr(i,j,k,m) = y2
-         enddo
-         enddo
-      enddo
-
-!..Note wrf_dm_gatherv expects zero-based km_s, km_e (J. Michalakes, 2009Oct30).
-
-#if ( defined( DM_PARALLEL ) &amp;&amp; ( ! defined( STUBMPI ) ) )
-      CALL wrf_dm_gatherv(tcg_racg, ntb_g*ntb_g1, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tmr_racg, ntb_g*ntb_g1, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tcr_gacr, ntb_g*ntb_g1, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tmg_gacr, ntb_g*ntb_g1, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tnr_racg, ntb_g*ntb_g1, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tnr_gacr, ntb_g*ntb_g1, km_s, km_e, R8SIZE)
-#endif
-
-
-      end subroutine qr_acr_qg
-!+---+-----------------------------------------------------------------+
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!..Rain collecting snow (and inverse).  Explicit CE integration.
-!+---+-----------------------------------------------------------------+
-
-      subroutine qr_acr_qs
-
-      implicit none
-
-!..Local variables
-      INTEGER:: i, j, k, m, n, n2
-      INTEGER:: km, km_s, km_e
-      DOUBLE PRECISION, DIMENSION(nbr):: vr, D1, N_r
-      DOUBLE PRECISION, DIMENSION(nbs):: vs, N_s
-      DOUBLE PRECISION:: loga_, a_, b_, second, M0, M2, M3, Mrat, oM3
-      DOUBLE PRECISION:: N0_r, lam_exp, lamr, slam1, slam2
-      DOUBLE PRECISION:: dvs, dvr, masss, massr
-      DOUBLE PRECISION:: t1, t2, t3, t4, z1, z2, z3, z4
-      DOUBLE PRECISION:: y1, y2, y3, y4
-
-!+---+
-
-      do n2 = 1, nbr
-!        vr(n2) = av_r*Dr(n2)**bv_r * DEXP(-fv_r*Dr(n2))
-         vr(n2) = -0.1021 + 4.932E3*Dr(n2) - 0.9551E6*Dr(n2)*Dr(n2)     &amp;
-              + 0.07934E9*Dr(n2)*Dr(n2)*Dr(n2)                          &amp;
-              - 0.002362E12*Dr(n2)*Dr(n2)*Dr(n2)*Dr(n2)
-         D1(n2) = (vr(n2)/av_s)**(1./bv_s)
-      enddo
-      do n = 1, nbs
-         vs(n) = 1.5*av_s*Ds(n)**bv_s * DEXP(-fv_s*Ds(n))
-      enddo
-
-!..Note values returned from wrf_dm_decomp1d are zero-based, add 1 for
-!.. fortran indices.  J. Michalakes, 2009Oct30.
-
-#if ( defined( DM_PARALLEL ) &amp;&amp; ( ! defined( STUBMPI ) ) )
-      CALL wrf_dm_decomp1d ( ntb_r*ntb_r1, km_s, km_e )
-#else
-      km_s = 0
-      km_e = ntb_r*ntb_r1 - 1
-#endif
-
-      do km = km_s, km_e
-         m = km / ntb_r1 + 1
-         k = mod( km , ntb_r1 ) + 1
-
-         lam_exp = (N0r_exp(k)*am_r*crg(1)/r_r(m))**ore1
-         lamr = lam_exp * (crg(3)*org2*org1)**obmr
-         N0_r = N0r_exp(k)/(crg(2)*lam_exp) * lamr**cre(2)
-         do n2 = 1, nbr
-            N_r(n2) = N0_r*Dr(n2)**mu_r * DEXP(-lamr*Dr(n2))*dtr(n2)
-         enddo
-
-         do j = 1, ntb_t
-            do i = 1, ntb_s
-
-!..From the bm_s moment, compute plus one moment.  If we are not
-!.. using bm_s=2, then we must transform to the pure 2nd moment
-!.. (variable called &quot;second&quot;) and then to the bm_s+1 moment.
-
-               M2 = r_s(i)*oams *1.0d0
-               if (bm_s.gt.2.0-1.E-3 .and. bm_s.lt.2.0+1.E-3) then
-                  loga_ = sa(1) + sa(2)*Tc(j) + sa(3)*bm_s &amp;
-                     + sa(4)*Tc(j)*bm_s + sa(5)*Tc(j)*Tc(j) &amp;
-                     + sa(6)*bm_s*bm_s + sa(7)*Tc(j)*Tc(j)*bm_s &amp;
-                     + sa(8)*Tc(j)*bm_s*bm_s + sa(9)*Tc(j)*Tc(j)*Tc(j) &amp;
-                     + sa(10)*bm_s*bm_s*bm_s
-                  a_ = 10.0**loga_
-                  b_ = sb(1) + sb(2)*Tc(j) + sb(3)*bm_s &amp;
-                     + sb(4)*Tc(j)*bm_s + sb(5)*Tc(j)*Tc(j) &amp;
-                     + sb(6)*bm_s*bm_s + sb(7)*Tc(j)*Tc(j)*bm_s &amp;
-                     + sb(8)*Tc(j)*bm_s*bm_s + sb(9)*Tc(j)*Tc(j)*Tc(j) &amp;
-                     + sb(10)*bm_s*bm_s*bm_s
-                  second = (M2/a_)**(1./b_)
-               else
-                  second = M2
-               endif
-
-               loga_ = sa(1) + sa(2)*Tc(j) + sa(3)*cse(1) &amp;
-                  + sa(4)*Tc(j)*cse(1) + sa(5)*Tc(j)*Tc(j) &amp;
-                  + sa(6)*cse(1)*cse(1) + sa(7)*Tc(j)*Tc(j)*cse(1) &amp;
-                  + sa(8)*Tc(j)*cse(1)*cse(1) + sa(9)*Tc(j)*Tc(j)*Tc(j) &amp;
-                  + sa(10)*cse(1)*cse(1)*cse(1)
-               a_ = 10.0**loga_
-               b_ = sb(1)+sb(2)*Tc(j)+sb(3)*cse(1) + sb(4)*Tc(j)*cse(1) &amp;
-                  + sb(5)*Tc(j)*Tc(j) + sb(6)*cse(1)*cse(1) &amp;
-                  + sb(7)*Tc(j)*Tc(j)*cse(1) + sb(8)*Tc(j)*cse(1)*cse(1) &amp;
-                  + sb(9)*Tc(j)*Tc(j)*Tc(j)+sb(10)*cse(1)*cse(1)*cse(1)
-               M3 = a_ * second**b_
-
-               oM3 = 1./M3
-               Mrat = M2*(M2*oM3)*(M2*oM3)*(M2*oM3)
-               M0   = (M2*oM3)**mu_s
-               slam1 = M2 * oM3 * Lam0
-               slam2 = M2 * oM3 * Lam1
-
-               do n = 1, nbs
-                  N_s(n) = Mrat*(Kap0*DEXP(-slam1*Ds(n)) &amp;
-                      + Kap1*M0*Ds(n)**mu_s * DEXP(-slam2*Ds(n)))*dts(n)
-               enddo
-
-               t1 = 0.0d0
-               t2 = 0.0d0
-               t3 = 0.0d0
-               t4 = 0.0d0
-               z1 = 0.0d0
-               z2 = 0.0d0
-               z3 = 0.0d0
-               z4 = 0.0d0
-               y1 = 0.0d0
-               y2 = 0.0d0
-               y3 = 0.0d0
-               y4 = 0.0d0
-               do n2 = 1, nbr
-                  massr = am_r * Dr(n2)**bm_r
-                  do n = 1, nbs
-                     masss = am_s * Ds(n)**bm_s
-      
-                     dvs = 0.5d0*((vr(n2) - vs(n)) + DABS(vr(n2)-vs(n)))
-                     dvr = 0.5d0*((vs(n) - vr(n2)) + DABS(vs(n)-vr(n2)))
-
-                     if (massr .gt. 2.5*masss) then
-                     t1 = t1+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvs*masss * N_s(n)* N_r(n2)
-                     z1 = z1+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvs*massr * N_s(n)* N_r(n2)
-                     y1 = y1+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvs       * N_s(n)* N_r(n2)
-                     else
-                     t3 = t3+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvs*masss * N_s(n)* N_r(n2)
-                     z3 = z3+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvs*massr * N_s(n)* N_r(n2)
-                     y3 = y3+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvs       * N_s(n)* N_r(n2)
-                     endif
-
-                     if (massr .gt. 2.5*masss) then
-                     t2 = t2+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvr*massr * N_s(n)* N_r(n2)
-                     y2 = y2+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvr       * N_s(n)* N_r(n2)
-                     z2 = z2+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvr*masss * N_s(n)* N_r(n2)
-                     else
-                     t4 = t4+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvr*massr * N_s(n)* N_r(n2)
-                     y4 = y4+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvr       * N_s(n)* N_r(n2)
-                     z4 = z4+ PI*.25*Ef_rs*(Ds(n)+Dr(n2))*(Ds(n)+Dr(n2)) &amp;
-                         *dvr*masss * N_s(n)* N_r(n2)
-                     endif
-
-                  enddo
-               enddo
-               tcs_racs1(i,j,k,m) = t1
-               tmr_racs1(i,j,k,m) = DMIN1(z1, r_r(m)*1.0d0)
-               tcs_racs2(i,j,k,m) = t3
-               tmr_racs2(i,j,k,m) = z3
-               tcr_sacr1(i,j,k,m) = t2
-               tms_sacr1(i,j,k,m) = z2
-               tcr_sacr2(i,j,k,m) = t4
-               tms_sacr2(i,j,k,m) = z4
-               tnr_racs1(i,j,k,m) = y1
-               tnr_racs2(i,j,k,m) = y3
-               tnr_sacr1(i,j,k,m) = y2
-               tnr_sacr2(i,j,k,m) = y4
-            enddo
-         enddo
-      enddo
-
-!..Note wrf_dm_gatherv expects zero-based km_s, km_e (J. Michalakes, 2009Oct30).
-
-#if ( defined( DM_PARALLEL ) &amp;&amp; ( ! defined( STUBMPI ) ) )
-      CALL wrf_dm_gatherv(tcs_racs1, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tmr_racs1, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tcs_racs2, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tmr_racs2, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tcr_sacr1, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tms_sacr1, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tcr_sacr2, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tms_sacr2, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tnr_racs1, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tnr_racs2, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tnr_sacr1, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-      CALL wrf_dm_gatherv(tnr_sacr2, ntb_s*ntb_t, km_s, km_e, R8SIZE)
-#endif
-
-
-      end subroutine qr_acr_qs
-!+---+-----------------------------------------------------------------+
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!..This is a literal adaptation of Bigg (1954) probability of drops of
-!..a particular volume freezing.  Given this probability, simply freeze
-!..the proportion of drops summing their masses.
-!+---+-----------------------------------------------------------------+
-
-      subroutine freezeH2O
-
-      implicit none
-
-!..Local variables
-      INTEGER:: i, j, k, n, n2
-      DOUBLE PRECISION, DIMENSION(nbr):: N_r, massr
-      DOUBLE PRECISION, DIMENSION(nbc):: N_c, massc
-      DOUBLE PRECISION:: sum1, sum2, sumn1, sumn2, &amp;
-                         prob, vol, Texp, orho_w, &amp;
-                         lam_exp, lamr, N0_r, lamc, N0_c, y
-
-!+---+
-
-      orho_w = 1./rho_w
-
-      do n2 = 1, nbr
-         massr(n2) = am_r*Dr(n2)**bm_r
-      enddo
-      do n = 1, nbc
-         massc(n) = am_r*Dc(n)**bm_r
-      enddo
-
-!..Freeze water (smallest drops become cloud ice, otherwise graupel).
-      do k = 1, 45
-!         print*, ' Freezing water for temp = ', -k
-         Texp = DEXP( DFLOAT(k) ) - 1.0D0
-         do j = 1, ntb_r1
-            do i = 1, ntb_r
-               lam_exp = (N0r_exp(j)*am_r*crg(1)/r_r(i))**ore1
-               lamr = lam_exp * (crg(3)*org2*org1)**obmr
-               N0_r = N0r_exp(j)/(crg(2)*lam_exp) * lamr**cre(2)
-               sum1 = 0.0d0
-               sum2 = 0.0d0
-               sumn1 = 0.0d0
-               sumn2 = 0.0d0
-               do n2 = 1, nbr
-                  N_r(n2) = N0_r*Dr(n2)**mu_r*DEXP(-lamr*Dr(n2))*dtr(n2)
-                  vol = massr(n2)*orho_w
-                  prob = 1.0D0 - DEXP(-120.0D0*vol*5.2D-4 * Texp)
-                  if (massr(n2) .lt. xm0g) then
-                     sumn1 = sumn1 + prob*N_r(n2)
-                     sum1 = sum1 + prob*N_r(n2)*massr(n2)
-                  else
-                     sumn2 = sumn2 + prob*N_r(n2)
-                     sum2 = sum2 + prob*N_r(n2)*massr(n2)
-                  endif
-               enddo
-               tpi_qrfz(i,j,k) = sum1
-               tni_qrfz(i,j,k) = sumn1
-               tpg_qrfz(i,j,k) = sum2
-               tnr_qrfz(i,j,k) = sumn2
-            enddo
-         enddo
-         do i = 1, ntb_c
-            lamc = 1.0D-6 * (Nt_c*am_r* ccg(2) * ocg1 / r_c(i))**obmr
-            N0_c = 1.0D-18 * Nt_c*ocg1 * lamc**cce(1)
-            sum1 = 0.0d0
-            sumn2 = 0.0d0
-            do n = 1, nbc
-               y = Dc(n)*1.0D6
-               vol = massc(n)*orho_w
-               prob = 1.0D0 - DEXP(-120.0D0*vol*5.2D-4 * Texp)
-               N_c(n) = N0_c* y**mu_c * EXP(-lamc*y)*dtc(n)
-               N_c(n) = 1.0D24 * N_c(n)
-               sumn2 = sumn2 + prob*N_c(n)
-               sum1 = sum1 + prob*N_c(n)*massc(n)
-            enddo
-            tpi_qcfz(i,k) = sum1
-            tni_qcfz(i,k) = sumn2
-         enddo
-      enddo
-
-      end subroutine freezeH2O
-!+---+-----------------------------------------------------------------+
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!..Cloud ice converting to snow since portion greater than min snow
-!.. size.  Given cloud ice content (kg/m**3), number concentration
-!.. (#/m**3) and gamma shape parameter, mu_i, break the distrib into
-!.. bins and figure out the mass/number of ice with sizes larger than
-!.. D0s.  Also, compute incomplete gamma function for the integration
-!.. of ice depositional growth from diameter=0 to D0s.  Amount of
-!.. ice depositional growth is this portion of distrib while larger
-!.. diameters contribute to snow growth (as in Harrington et al. 1995).
-!+---+-----------------------------------------------------------------+
-
-      subroutine qi_aut_qs
-
-      implicit none
-
-!..Local variables
-      INTEGER:: i, j, n2
-      DOUBLE PRECISION, DIMENSION(nbi):: N_i
-      DOUBLE PRECISION:: N0_i, lami, Di_mean, t1, t2
-
-!+---+
-
-      do j = 1, ntb_i1
-         do i = 1, ntb_i
-            lami = (am_i*cig(2)*oig1*Nt_i(j)/r_i(i))**obmi
-            Di_mean = (bm_i + mu_i + 1.) / lami
-            N0_i = Nt_i(j)*oig1 * lami**cie(1)
-            t1 = 0.0d0
-            t2 = 0.0d0
-            if (SNGL(Di_mean) .gt. 5.*D0s) then
-             t1 = r_i(i)
-             t2 = Nt_i(j)
-             tpi_ide(i,j) = 0.0D0
-            elseif (SNGL(Di_mean) .lt. D0i) then
-             t1 = 0.0D0
-             t2 = 0.0D0
-             tpi_ide(i,j) = 1.0D0
-            else
-#if (DWORDSIZE == 8 &amp;&amp; RWORDSIZE == 8)
-             tpi_ide(i,j) = GAMMP(mu_i+2.0, REAL(lami,KIND=8)*D0s) * 1.0D0
-#elif (DWORDSIZE == 8 &amp;&amp; RWORDSIZE == 4)
-             tpi_ide(i,j) = GAMMP(mu_i+2.0, REAL(lami,KIND=4)*D0s) * 1.0D0
-#else
-!    This is a temporary hack assuming double precision is 8 bytes.
-#endif
-             do n2 = 1, nbi
-               N_i(n2) = N0_i*Di(n2)**mu_i * DEXP(-lami*Di(n2))*dti(n2)
-               if (Di(n2).ge.D0s) then
-                  t1 = t1 + N_i(n2) * am_i*Di(n2)**bm_i
-                  t2 = t2 + N_i(n2)
-               endif
-             enddo
-            endif
-            tps_iaus(i,j) = t1
-            tni_iaus(i,j) = t2
-         enddo
-      enddo
-
-      end subroutine qi_aut_qs
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!..Variable collision efficiency for rain collecting cloud water using
-!.. method of Beard and Grover, 1974 if a/A less than 0.25; otherwise
-!.. uses polynomials to get close match of Pruppacher &amp; Klett Fig 14-9.
-!+---+-----------------------------------------------------------------+
-
-      subroutine table_Efrw
-
-      implicit none
-
-!..Local variables
-      DOUBLE PRECISION:: vtr, stokes, reynolds, Ef_rw
-      DOUBLE PRECISION:: p, yc0, F, G, H, z, K0, X
-      INTEGER:: i, j
-
-      do j = 1, nbc
-      do i = 1, nbr
-         Ef_rw = 0.0
-         p = Dc(j)/Dr(i)
-         if (Dr(i).lt.50.E-6 .or. Dc(j).lt.3.E-6) then
-          t_Efrw(i,j) = 0.0
-         elseif (p.gt.0.25) then
-          X = Dc(j)*1.D6
-          if (Dr(i) .lt. 75.e-6) then
-             Ef_rw = 0.026794*X - 0.20604
-          elseif (Dr(i) .lt. 125.e-6) then
-             Ef_rw = -0.00066842*X*X + 0.061542*X - 0.37089
-          elseif (Dr(i) .lt. 175.e-6) then
-             Ef_rw = 4.091e-06*X*X*X*X - 0.00030908*X*X*X               &amp;
-                   + 0.0066237*X*X - 0.0013687*X - 0.073022
-          elseif (Dr(i) .lt. 250.e-6) then
-             Ef_rw = 9.6719e-5*X*X*X - 0.0068901*X*X + 0.17305*X        &amp;
-                   - 0.65988
-          elseif (Dr(i) .lt. 350.e-6) then
-             Ef_rw = 9.0488e-5*X*X*X - 0.006585*X*X + 0.16606*X         &amp;
-                   - 0.56125
-          else
-             Ef_rw = 0.00010721*X*X*X - 0.0072962*X*X + 0.1704*X        &amp;
-                   - 0.46929
-          endif
-         else
-          vtr = -0.1021 + 4.932E3*Dr(i) - 0.9551E6*Dr(i)*Dr(i) &amp;
-              + 0.07934E9*Dr(i)*Dr(i)*Dr(i) &amp;
-              - 0.002362E12*Dr(i)*Dr(i)*Dr(i)*Dr(i)
-          stokes = Dc(j)*Dc(j)*vtr*rho_w/(9.*1.718E-5*Dr(i))
-          reynolds = 9.*stokes/(p*p*rho_w)
-
-          F = DLOG(reynolds)
-          G = -0.1007D0 - 0.358D0*F + 0.0261D0*F*F
-          K0 = DEXP(G)
-          z = DLOG(stokes/(K0+1.D-15))
-          H = 0.1465D0 + 1.302D0*z - 0.607D0*z*z + 0.293D0*z*z*z
-          yc0 = 2.0D0/PI * ATAN(H)
-          Ef_rw = (yc0+p)*(yc0+p) / ((1.+p)*(1.+p))
-
-         endif
-
-         t_Efrw(i,j) = MAX(0.0, MIN(SNGL(Ef_rw), 0.95))
-
-      enddo
-      enddo
-
-      end subroutine table_Efrw
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!..Variable collision efficiency for snow collecting cloud water using
-!.. method of Wang and Ji, 2000 except equate melted snow diameter to
-!.. their &quot;effective collision cross-section.&quot;
-!+---+-----------------------------------------------------------------+
-
-      subroutine table_Efsw
-
-      implicit none
-
-!..Local variables
-      DOUBLE PRECISION:: Ds_m, vts, vtc, stokes, reynolds, Ef_sw
-      DOUBLE PRECISION:: p, yc0, F, G, H, z, K0
-      INTEGER:: i, j
-
-      do j = 1, nbc
-      vtc = 1.19D4 * (1.0D4*Dc(j)*Dc(j)*0.25D0)
-      do i = 1, nbs
-         vts = av_s*Ds(i)**bv_s * DEXP(-fv_s*Ds(i)) - vtc
-         Ds_m = (am_s*Ds(i)**bm_s / am_r)**obmr
-         p = Dc(j)/Ds_m
-         if (p.gt.0.25 .or. Ds(i).lt.D0s .or. Dc(j).lt.6.E-6 &amp;
-               .or. vts.lt.1.E-3) then
-          t_Efsw(i,j) = 0.0
-         else
-          stokes = Dc(j)*Dc(j)*vts*rho_w/(9.*1.718E-5*Ds_m)
-          reynolds = 9.*stokes/(p*p*rho_w)
-
-          F = DLOG(reynolds)
-          G = -0.1007D0 - 0.358D0*F + 0.0261D0*F*F
-          K0 = DEXP(G)
-          z = DLOG(stokes/(K0+1.D-15))
-          H = 0.1465D0 + 1.302D0*z - 0.607D0*z*z + 0.293D0*z*z*z
-          yc0 = 2.0D0/PI * ATAN(H)
-          Ef_sw = (yc0+p)*(yc0+p) / ((1.+p)*(1.+p))
-
-          t_Efsw(i,j) = MAX(0.0, MIN(SNGL(Ef_sw), 0.95))
-         endif
-
-      enddo
-      enddo
-
-      end subroutine table_Efsw
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!..Integrate rain size distribution from zero to D-star to compute the
-!.. number of drops smaller than D-star that evaporate in a single
-!.. timestep.  Drops larger than D-star dont evaporate entirely so do
-!.. not affect number concentration.
-!+---+-----------------------------------------------------------------+
-
-      subroutine table_dropEvap
-
-      implicit none
-
-!..Local variables
-      DOUBLE PRECISION:: Nt_r, N0, lam_exp, lam
-      INTEGER:: i, j, k
-
-      do k = 1, ntb_r
-      do j = 1, ntb_r1
-         lam_exp = (N0r_exp(j)*am_r*crg(1)/r_r(k))**ore1
-         lam = lam_exp * (crg(3)*org2*org1)**obmr
-         N0 = N0r_exp(j)/(crg(2)*lam_exp) * lam**cre(2)
-         Nt_r = N0 * crg(2) / lam**cre(2)
-
-         do i = 1, nbr
-#if (DWORDSIZE == 8 &amp;&amp; RWORDSIZE == 8)
-            tnr_rev(i,j,k) = GAMMP(mu_r+1.0, REAL(Dr(i)*lam,KIND=8)) * Nt_r
-#elif (DWORDSIZE == 8 &amp;&amp; RWORDSIZE == 4)
-            tnr_rev(i,j,k) = GAMMP(mu_r+1.0, REAL(Dr(i)*lam,KIND=4)) * Nt_r
-#else
-!    This is a temporary hack assuming double precision is 8 bytes.
-#endif
-         enddo
-
-      enddo
-      enddo
-
-      end subroutine table_dropEvap
-
-! TO APPLY TABLE ABOVE
-!..Rain lookup table indexes.
-!         Dr_star = DSQRT(-2.D0*DT * t1_evap/(2.*PI) &amp;
-!                 * 0.78*4.*diffu(k)*xsat*rvs/rho_w)
-!         idx_d = NINT(1.0 + FLOAT(nbr) * DLOG(Dr_star/D0r)             &amp;
-!               / DLOG(Dr(nbr)/D0r))
-!         idx_d = MAX(1, MIN(idx_d, nbr))
-!
-!         nir = NINT(ALOG10(rr(k)))
-!         do nn = nir-1, nir+1
-!            n = nn
-!            if ( (rr(k)/10.**nn).ge.1.0 .and. &amp;
-!                 (rr(k)/10.**nn).lt.10.0) goto 154
-!         enddo
-!154      continue
-!         idx_r = INT(rr(k)/10.**n) + 10*(n-nir2) - (n-nir2)
-!         idx_r = MAX(1, MIN(idx_r, ntb_r))
-!
-!         lamr = (am_r*crg(3)*org2*nr(k)/rr(k))**obmr
-!         lam_exp = lamr * (crg(3)*org2*org1)**bm_r
-!         N0_exp = org1*rr(k)/am_r * lam_exp**cre(1)
-!         nir = NINT(DLOG10(N0_exp))
-!         do nn = nir-1, nir+1
-!            n = nn
-!            if ( (N0_exp/10.**nn).ge.1.0 .and. &amp;
-!                 (N0_exp/10.**nn).lt.10.0) goto 155
-!         enddo
-!155      continue
-!         idx_r1 = INT(N0_exp/10.**n) + 10*(n-nir3) - (n-nir3)
-!         idx_r1 = MAX(1, MIN(idx_r1, ntb_r1))
-!
-!         pnr_rev(k) = MIN(nr(k)*odts, SNGL(tnr_rev(idx_d,idx_r1,idx_r) &amp;   ! RAIN2M
-!                    * odts))
-!
-!ctrlL
-!+---+-----------------------------------------------------------------+
-!+---+-----------------------------------------------------------------+
-      SUBROUTINE GCF(GAMMCF,A,X,GLN)
-!     --- RETURNS THE INCOMPLETE GAMMA FUNCTION Q(A,X) EVALUATED BY ITS
-!     --- CONTINUED FRACTION REPRESENTATION AS GAMMCF.  ALSO RETURNS
-!     --- LN(GAMMA(A)) AS GLN.  THE CONTINUED FRACTION IS EVALUATED BY
-!     --- A MODIFIED LENTZ METHOD.
-!     --- USES GAMMLN
-      IMPLICIT NONE
-      INTEGER, PARAMETER:: ITMAX=100
-      REAL, PARAMETER:: gEPS=3.E-7
-      REAL, PARAMETER:: FPMIN=1.E-30
-      REAL, INTENT(IN):: A, X
-      REAL:: GAMMCF,GLN
-      INTEGER:: I
-      REAL:: AN,B,C,D,DEL,H
-      GLN=GAMMLN(A)
-      B=X+1.-A
-      C=1./FPMIN
-      D=1./B
-      H=D
-      DO 11 I=1,ITMAX
-        AN=-I*(I-A)
-        B=B+2.
-        D=AN*D+B
-        IF(ABS(D).LT.FPMIN)D=FPMIN
-        C=B+AN/C
-        IF(ABS(C).LT.FPMIN)C=FPMIN
-        D=1./D
-        DEL=D*C
-        H=H*DEL
-        IF(ABS(DEL-1.).LT.gEPS)GOTO 1
- 11   CONTINUE
-      PRINT *, 'A TOO LARGE, ITMAX TOO SMALL IN GCF'
- 1    GAMMCF=EXP(-X+A*LOG(X)-GLN)*H
-      END SUBROUTINE GCF
-!  (C) Copr. 1986-92 Numerical Recipes Software 2.02
-!+---+-----------------------------------------------------------------+
-      SUBROUTINE GSER(GAMSER,A,X,GLN)
-!     --- RETURNS THE INCOMPLETE GAMMA FUNCTION P(A,X) EVALUATED BY ITS
-!     --- ITS SERIES REPRESENTATION AS GAMSER.  ALSO RETURNS LN(GAMMA(A)) 
-!     --- AS GLN.
-!     --- USES GAMMLN
-      IMPLICIT NONE
-      INTEGER, PARAMETER:: ITMAX=100
-      REAL, PARAMETER:: gEPS=3.E-7
-      REAL, INTENT(IN):: A, X
-      REAL:: GAMSER,GLN
-      INTEGER:: N
-      REAL:: AP,DEL,SUM
-      GLN=GAMMLN(A)
-      IF(X.LE.0.)THEN
-        IF(X.LT.0.) PRINT *, 'X &lt; 0 IN GSER'
-        GAMSER=0.
-        RETURN
-      ENDIF
-      AP=A
-      SUM=1./A
-      DEL=SUM
-      DO 11 N=1,ITMAX
-        AP=AP+1.
-        DEL=DEL*X/AP
-        SUM=SUM+DEL
-        IF(ABS(DEL).LT.ABS(SUM)*gEPS)GOTO 1
- 11   CONTINUE
-      PRINT *,'A TOO LARGE, ITMAX TOO SMALL IN GSER'
- 1    GAMSER=SUM*EXP(-X+A*LOG(X)-GLN)
-      END SUBROUTINE GSER
-!  (C) Copr. 1986-92 Numerical Recipes Software 2.02
-!+---+-----------------------------------------------------------------+
-      REAL FUNCTION GAMMLN(XX)
-!     --- RETURNS THE VALUE LN(GAMMA(XX)) FOR XX &gt; 0.
-      IMPLICIT NONE
-      REAL, INTENT(IN):: XX
-      DOUBLE PRECISION, PARAMETER:: STP = 2.5066282746310005D0
-      DOUBLE PRECISION, DIMENSION(6), PARAMETER:: &amp;
-               COF = (/76.18009172947146D0, -86.50532032941677D0, &amp;
-                       24.01409824083091D0, -1.231739572450155D0, &amp;
-                      .1208650973866179D-2, -.5395239384953D-5/)
-      DOUBLE PRECISION:: SER,TMP,X,Y
-      INTEGER:: J
-
-      X=XX
-      Y=X
-      TMP=X+5.5D0
-      TMP=(X+0.5D0)*LOG(TMP)-TMP
-      SER=1.000000000190015D0
-      DO 11 J=1,6
-        Y=Y+1.D0
-        SER=SER+COF(J)/Y
-11    CONTINUE
-      GAMMLN=TMP+LOG(STP*SER/X)
-      END FUNCTION GAMMLN
-!  (C) Copr. 1986-92 Numerical Recipes Software 2.02
-!+---+-----------------------------------------------------------------+
-      REAL FUNCTION GAMMP(A,X)
-!     --- COMPUTES THE INCOMPLETE GAMMA FUNCTION P(A,X)
-!     --- SEE ABRAMOWITZ AND STEGUN 6.5.1
-!     --- USES GCF,GSER
-      IMPLICIT NONE
-      REAL, INTENT(IN):: A,X
-      REAL:: GAMMCF,GAMSER,GLN
-      GAMMP = 0.
-      IF((X.LT.0.) .OR. (A.LE.0.)) THEN
-        PRINT *, 'BAD ARGUMENTS IN GAMMP'
-        RETURN
-      ELSEIF(X.LT.A+1.)THEN
-        CALL GSER(GAMSER,A,X,GLN)
-        GAMMP=GAMSER
-      ELSE
-        CALL GCF(GAMMCF,A,X,GLN)
-        GAMMP=1.-GAMMCF
-      ENDIF
-      END FUNCTION GAMMP
-!  (C) Copr. 1986-92 Numerical Recipes Software 2.02
-!+---+-----------------------------------------------------------------+
-      REAL FUNCTION WGAMMA(y)
-
-      IMPLICIT NONE
-      REAL, INTENT(IN):: y
-
-      WGAMMA = EXP(GAMMLN(y))
-
-      END FUNCTION WGAMMA
-!+---+-----------------------------------------------------------------+
-! THIS FUNCTION CALCULATES THE LIQUID SATURATION VAPOR MIXING RATIO AS
-! A FUNCTION OF TEMPERATURE AND PRESSURE
-!
-      REAL FUNCTION RSLF(P,T)
-
-      IMPLICIT NONE
-      REAL, INTENT(IN):: P, T
-      REAL:: ESL,X
-      REAL, PARAMETER:: C0= .611583699E03
-      REAL, PARAMETER:: C1= .444606896E02
-      REAL, PARAMETER:: C2= .143177157E01
-      REAL, PARAMETER:: C3= .264224321E-1
-      REAL, PARAMETER:: C4= .299291081E-3
-      REAL, PARAMETER:: C5= .203154182E-5
-      REAL, PARAMETER:: C6= .702620698E-8
-      REAL, PARAMETER:: C7= .379534310E-11
-      REAL, PARAMETER:: C8=-.321582393E-13
-
-      X=MAX(-80.,T-273.16)
-
-!      ESL=612.2*EXP(17.67*X/(T-29.65))
-      ESL=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8)))))))
-      RSLF=.622*ESL/(P-ESL)
-
-!    ALTERNATIVE
-!  ; Source: Murphy and Koop, Review of the vapour pressure of ice and
-!             supercooled water for atmospheric applications, Q. J. R.
-!             Meteorol. Soc (2005), 131, pp. 1539-1565.
-!    ESL = EXP(54.842763 - 6763.22 / T - 4.210 * ALOG(T) + 0.000367 * T
-!        + TANH(0.0415 * (T - 218.8)) * (53.878 - 1331.22
-!        / T - 9.44523 * ALOG(T) + 0.014025 * T))
-
-      END FUNCTION RSLF
-!+---+-----------------------------------------------------------------+
-! THIS FUNCTION CALCULATES THE ICE SATURATION VAPOR MIXING RATIO AS A
-! FUNCTION OF TEMPERATURE AND PRESSURE
-!
-      REAL FUNCTION RSIF(P,T)
-
-      IMPLICIT NONE
-      REAL, INTENT(IN):: P, T
-      REAL:: ESI,X
-      REAL, PARAMETER:: C0= .609868993E03
-      REAL, PARAMETER:: C1= .499320233E02
-      REAL, PARAMETER:: C2= .184672631E01
-      REAL, PARAMETER:: C3= .402737184E-1
-      REAL, PARAMETER:: C4= .565392987E-3
-      REAL, PARAMETER:: C5= .521693933E-5
-      REAL, PARAMETER:: C6= .307839583E-7
-      REAL, PARAMETER:: C7= .105785160E-9
-      REAL, PARAMETER:: C8= .161444444E-12
-
-      X=MAX(-80.,T-273.16)
-      ESI=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8)))))))
-      RSIF=.622*ESI/(P-ESI)
-
-!    ALTERNATIVE
-!  ; Source: Murphy and Koop, Review of the vapour pressure of ice and
-!             supercooled water for atmospheric applications, Q. J. R.
-!             Meteorol. Soc (2005), 131, pp. 1539-1565.
-!     ESI = EXP(9.550426 - 5723.265/T + 3.53068*ALOG(T) - 0.00728332*T)
-
-      END FUNCTION RSIF
-!+---+-----------------------------------------------------------------+
-
-!+---+-----------------------------------------------------------------+
-END MODULE module_mp_thompson
-!+---+-----------------------------------------------------------------+

</font>
</pre>