Lateral Boundary Conditions for the MPAS system:
Requirements and Design

MPAS Development Team

March 25, 2010

Contents

1 Summary of Problem
1.1 Requirements
1.2 Design o
1.3 Modified Routines and interfaces

Chapter 1

Summary of Problem

Within the MPAS framework we need to support a variety of model config-
urations. Notably, we need to support model configurations that span the
entire surface of the sphere (termed ”global”), configurations that span the
infinite plane via doubly-periodic boundary conditions (”doubly-periodic”),
configurations that produce a channel system on the plane or on the sur-
face of the sphere (”channel”) and configurations that support an arbitrary
number of islands in either a planar or spheric setting (”basin”).

At present, MPAS is configured in (z,y,z). As a result, supporting
spherical or planar geometries is obtained by construction. Also, topologi-
cally the global and doubly-periodic domains are identical; both are singly-
connected domains meaning that any closed loop can be continuously de-
formed to match any other closed loop. Requirements for supporting global
domains will also cover doubly-periodic domains. Furthermore, the current
implementation of MPAS supports both global and doubly-periodic geome-
tries, so no additional requirements are needed for those systems. We must
only insure not to break the ”global” ability when adding support for the
channel and basin configurations.

Both the channel and basin system bring with them the notion of a
boundary, i.e. a place where the system requires user-specified values in
order to solve the problem. Within the discrete system, there are various
ways to implement a boundary, ranging from methods that try to match dis-
crete domain to a user-specified boundary location (i.e. immersed boundary,
shaved-cells, etc.) to methods that make the boundary match the discrete
mesh. Supporting different ”types” of boundary specification is a huge ef-
fort, not one to be undertaken at this early stage in development. Rather,
our goal here is to get some notion of a boundary into MPAS in as simple a

way as possible.

Figure 1 summarizes the type of boundary that this document intends
to discuss. The discrete boundary will be composed of a set of edges. In
effect, the boundary is made to match the discrete mesh; a cell is either fully
in the simulation domain or is removed.

In certain configurations, such as a z-level ocean model or a step-topography
atmosphere model, the location of the boundary might change with height.
As a result, we need to allow the functional that supports specification of
boundary conditions to vary in the vertical.

Velocity is solved at the center of cell edges. As a result, when a boundary
is present, velocity points will exist on that boundary. Users may want to
specify other edge-based quantities as well, such as tracer concentrations.
In addition, vorticity is computed at cell vertices based on the velocity field.
Special consideration will have be given to the computation of vorticity at
vertex points along the boundary.

1.1 Requirements

A list of requirements related to supporting lateral boundaries of the type
discussed above is as follows:

1. Users can specify an arbitrary list of edges and vertices that will de-
fined as boundary edges and boundary vertices, respectively.!

2. Users can specify a time-indepent values of any edge- or vertex-based
field at boundary edges and boundary vertices, respectively.

1.2 Design

The design philosophy is to implement support for boundaries in MPAS in
a sensible, but minimalist manner. We must keep in mind that we are still
building prototype code, so we should implement support for boundaries
with this in mind. The conceptual design is as follows:

la. Add the "boundaryEdge” attribute to the grid derived data type.
boundaryEdge will have a default of 0 (integer). boundaryEdge will be of

'We will assume that this user-specification results in an arbitrary number of closed,
non-overlapping loops based on edge number.

Special consideration will be required
for the curl operator at vertex points
that sit on the boundary.

Simulation
Domain

User-specified values (of a form to
be discussed) will be required at edge
points that sit on the boundary.

Figure 1.1: A graphical representation of the discrete boundary.

size (nVertLevels, nEdges). Values of 1 will denote that the edge resides
on the boundary and will be updated with user-supplied boundary data.
boundaryEdge will be contained in the grid.nc file, read in at the initial-
ization of the simulation and made available anytime the grid derived data
type is available.

1b. Add the "boundaryVertex” attribute to the grid derived data type.
boundaryVertex will have a default of 0 (integer). boundaryVertex will be
of size (nVertLevels, nVertices). Values of 1 will denote that the vertex
resides on the boundary and will be updated with user-supplied boundary
data. boundaryVertex will be contained in the grid.nc file, read in at the
initialization of the simulation and made available anytime the grid derived
data type is available.

2a. Add the "boundary Velocity” attribute to the state derived data type.
boundaryVelocity will have a default value of 0 (double precision) and will
be of size (nVertLevels, nEdges). Where boundaryEdge(iLevel, iEdge) ==
1, the computed velocity(iLevel, iEdge) will be replaced by boundaryVeloc-
ity (iLevel, iEdge).2

2b. Add the ”boundaryVorticity” attribute to the state derived data
type. boundaryVorticity will have a default value of 0 (double precision)
and will be of size (nVertLevels, nVertices). Where boundaryVertex(iLevel,
iVertex) == 1, the computed vorticity(iLevel, iVertex) will be replaced by
boundary Vorticity (iLevel, iVertex).

3. The model is presently constructed with the assumptions that every
edge is associated with exactly two cell centers. At every boundary edge one
(and exactly one) of these cells will be removed because it is not a part of
the simulation domain (e.g. see Figure 1). Changing the assumption that
nCellsOnEdge = 2 would result in a great deal of work due to ”touching” a
significant amount of code. Our design will not change this assumption, but
rather referenced cells that do not exist will be given a value of zero when
grid.nc is generated. For example, Figure 1 shows that edge el is associated
with cells ¢l and ¢2 (assume ¢4 > ¢3 > ¢2 > cl and €5 > ed > e3 > e2 > el
in Figure 1). In a global simulation, ¢l and ¢2 are a part of the simulation
domain and, thus,

2There is clearly a lack of extensibility here. Adding more user-specified fields means
adding more boundary arrays, one-by-one.

cellsOnEdge(el,1)
cellsOnEdge(el,2)

cl
c2

but when ¢l does not exist because el is boundary edge, users will provide

cellsOnEdge(el,1) = c2
cellsOnEdge(el,2) 0

in the grid.nc file. By construction, only one of these cells can be ”out-
side” the simulation domain so only one entry in cellsOnEdge(el,:) can be
non-zero. Furthermore, we will assume that only the ”second” cell, i.e. cell-
sOnEdge(el,2), can be zero. The model assumes throughout that positive
normal vectors point from cellsOnEdge(iEdge,1) toward cellsOnEdge(iEdge,2)
for all iEdge. We will remain consistent with that definition, thus a positive
velocity will always be directed away from the simulation domain at bound-
ary edge points.

4. Tt is also assumed in MPAS that every vertex is associated with exactly
nVertexDegree edges and nVertexDegree cell centers. nVertexDegree can
have a value of 3 (Voronoi diagrams) or a value of 4 (quadrilateral meshes).
When boundary edges are present, some of the edges and cells in the arrays
edgesOnVertex and cellsOnVertex will not exist. As above, we will place
zeroes in these arrays when the referenced entity does not exist.

For any iVertex the entries in edgesOnVertex(iVertex,:) and cellsOnVer-
tex(iVertex,:) contain the edges and cells associated with a given vertex,
respectively. For example, in a global simulation we would have

cellsOnVertex(v2,1) = ci
cellsOnVertex(v2,2) = c4
cellsOnVertex(v2,3) = c3

edgesOnVertex(v2,1) = e2
edgesOnVertex(v2,1) = e4
edgesOnVertex(v2,1) = eb

but when cl1, ¢4 and e4 do not exist, these arrays will become

cellsOnVertex(v2,1) = 0
cellsOnVertex(v2,2) = 0
cellsOnVertex(v2,3) = c3

edgesOnVertex(v2,1) = e2
edgesOnVertex(v2,1) = 0
edgesOnVertex(v2,1) = eb

5. In order to avoid referencing cells and edges that have a value of zero
during the simulation, at runtime all entries in cellsOnEdge, edgesOnVertex
and cellsOnVertex with a value of zero will be given a value of nCells+1
or nEdges+1, as appropriate.® In order for this to be valid, allocation of
derived data types will have be of size nCells+1 and nEdges+1 for cell and
edge quantities, respectively. Note that nCells and nEdges varies across
processors in distributed memory simulations, so this replacement has to be
done after decomposition. This also means that during the construction of
the halo regions, tests for cells and edges with a value of zero will have to
be done.

6. In order to avoid the reconstruction of the tangent velocity at edge
boundary points, the value of nEdgesOnEdge(iEdge) will be set to zero if
boundaryEdge(iEdge) = 1. Note that the array edgesOnEdge(iEdge) will
be full (and unchanged from the global simulation domain) when bound-
aryEdge(iEdge)=0 and will never be reference when boundaryEdge(iEdge)=1.

7. We compute the area associated with each vertex by summing up the
"kite” areas (see Al, A2 and A3 in Figure 1). In a global simulation, A1,
A2 and A3 would all be non-zero. In this simulation with boundaries we
will have A1=0 and A2=0. In its full glory, the expression is

kiteAreaOnVertex(v2, 1) =0
kiteAreaOnVertex(v2, 2) = 0
kiteAreaOnVertex(v2, 3) = A3

By zeroing those kite areas that lie outside the simulation domain, we can
retain the definition that cell areas (areaCell) are the sum the associated
kite areas and that vertex areas (areaTriangle) are also the sum of associ-
ated kite areas.

8. The curl operator at boundary vertex points requires special attention
since it will involve both boundary edges and edges that have been removed

3In the grid.nc file, nCells, nVertices and nEdges refer to the total number of cells,
vertices and edges, respectively, on the entire mesh. In the simulation code, these same
variables refer to the number of cells, vertices and edges on a specific processor.

because they reside outside the simulation domain. In a global simulation,
the curl operator at vertex v2 would be

vorticity(v2)=(u(e4)*dc(ed)-u(eb)*dc(eb)-u(e2)*dc(e2))/areaTriangle(v2)

The issue here is that e4 will not exist when the boundary shown in Figure 1
is present. Assuming that the areaTriangle is computed as specified above,
the curl operator could remained unchanged so long the term u(e4)*dc(e4)
returns a value of zero.* When boundaries are present, e4 will not exist
and, thus, this memory location will point to the entry at nEdges+1. A
very easy way to force u(e4)*dc(ed) is to always specify u(nEdges+1)=0
and set dc(nEdges+1)=1. Setting dc(nEdges+1)=1 insures that we do not
get NaNs when computing gradients.

The design for the curl operator will be to leave it unchanged, but to
insure that u(nEdges+1) always returns a zero.

1.3 Modified Routines and interfaces

To be completed.

Initialization

Operators

4When going from the global simulation to one having boundaries, the normal vector
at e2 changes sign because c1 is culled and we assume that the normal is always directed
outwards at boundary edges. As a result the direction of a positive u(e2) also changes
sign. This should be accommodated without modification in the present curl operator
because the vertices in verticesOnEdge will also flip. We will have to check to make sure
this happens correctly.

