<p><b>weiwang</b> 2012-01-10 15:15:09 -0700 (Tue, 10 Jan 2012)</p><p>eqn correction from WCS<br>
</p><hr noshade><pre><font color="gray">Modified: trunk/wrf/technote/discretization.tex
===================================================================
--- trunk/wrf/technote/discretization.tex        2012-01-09 22:51:06 UTC (rev 326)
+++ trunk/wrf/technote/discretization.tex        2012-01-10 22:15:09 UTC (rev 327)
@@ -134,19 +134,25 @@
%
\begin{align}
</font>
<font color="red">ull\hskip-.5in
- \delta_\tau U'' + \mu^{t^*}\alpha^{t^*} \partial_x {p''}^\tau
- + (\mu^{t^*} \partial_x \bar p){\alpha''}^\tau
- + (\alpha/\alpha_d) [\mu^{t^*} \partial_x {\phi''}^\tau
- + (\partial_x \phi^{t^*})(\partial_\eta p''-\mu'')^\tau]
- &= {R_U}^{t^*}
+\partial_t U'' + (m_x/m_y)(\alpha^{t^*}/\alpha^{t^*}_d) \left[\mu_d^{t^*} \left(
+\alpha_d^{t^*} \partial_x {p''}^\tau + {\alpha_d''}^\tau \partial_x {\overline p} + \partial_x {\phi''}^\tau \right)
++ \partial_x \phi^{t^*} \left(\partial_\eta {p''} - {\mu''_d} \right)^\tau \right] & = R_U^{t^*}
+%% \delta_\tau U'' + \mu^{t^*}\alpha^{t^*} \partial_x {p''}^\tau
+%% + (\mu^{t^*} \partial_x \bar p){\alpha''}^\tau
+%% + (\alpha/\alpha_d) [\mu^{t^*} \partial_x {\phi''}^\tau
+%% + (\partial_x \phi^{t^*})(\partial_\eta p''-\mu'')^\tau]
+%% &= {R_U}^{t^*}
\label{u-small-step}
\\
</font>
<font color="gray">ull\hskip-.5in
- \delta_\tau V'' + \mu^{t^*}\alpha^{t^*} \partial_y {p''}^\tau
- + (\mu^{t^*} \partial_y \bar p){\alpha''}^\tau
- + (\alpha/\alpha_d) [\mu^{t^*} \partial_y {\phi''}^\tau
- + (\partial_y \phi^{t^*})(\partial_\eta p''-\mu'')^\tau]
- &= {R_V}^{t^*}
+\partial_t V'' + (m_y/m_x)(\alpha^{t^*}/\alpha^{t^*}_d) \left[\mu_d^{t^*} \left(
+\alpha_d^{t^*} \partial_y {p''}^\tau + {\alpha_d''}^\tau \partial_y {\overline p} + \partial_y {\phi''}^\tau \right)
++ \partial_y \phi^{t^*} \left(\partial_\eta {p''} - {\mu''_d} \right)^\tau \right] & = R_V^{t^*}
+%% \delta_\tau V'' + \mu^{t^*}\alpha^{t^*} \partial_y {p''}^\tau
+%% + (\mu^{t^*} \partial_y \bar p){\alpha''}^\tau
+%% + (\alpha/\alpha_d) [\mu^{t^*} \partial_y {\phi''}^\tau
+%% + (\partial_y \phi^{t^*})(\partial_\eta p''-\mu'')^\tau]
+%% &= {R_V}^{t^*}
\label{v-small-step}
\\
\delta_\tau \mu_d''
@@ -173,7 +179,7 @@
\\
\delta_\tau \phi'' + {1\over\mu_d^{t^*}}
%% [ m_y \Omega''^{\tau+\Delta \tau}\phi_\eta^{t^*} - m_y \overline{g W''}^\tau ]
-[ m_y \Omega''^{\tau+\Delta \tau}\partial_\eta\phi^{t^*} - m_y \overline{g W''}^\tau ]
+[ m_y \Omega''^{\tau+\Delta \tau}\delta_\eta \phi^{t^*} - m_y \overline{g W''}^\tau ]
&= {R_\phi}^{t^*}.
\label{geo-small-step}
\end{align}
@@ -185,25 +191,31 @@
and are given by
%
\begin{align}
-R_U^{t^*} = &
-- m_x[\partial_x(Uu) + \partial_y(Vu)] - \hphantom{(m_y/m_x)} \partial_\eta (\Omega u)
-- ({\mu}_d \alpha \partial_x p'
-- {\mu}_d \alpha' \partial_x \bar{p}) ~~~~~~~~ </font>
<font color="red">otag
-\\
-& - (\alpha/\alpha_d) ( {\mu}_d \partial_x \phi'
- - \partial_\eta p' \partial_x \phi
- + {\mu}_d' \partial_x \phi ) + F_U
+R_U^{t^*} = & - m_x\left[\partial_x (Uu) + \partial_y (Vu)\right] - \partial_\eta (\Omega u) & \cr
+& -(m_x/m_y) (\alpha/\alpha_d) \left[ \mu_d (\partial_x \phi' + \alpha_d \partial_x p' + \alpha'_d \partial_x \overline{p}) +
+\partial_x \phi (\partial_\eta p' - \mu'_d)\right]
+%%R_U^{t^*} = &
+%%- m_x[\partial_x(Uu) + \partial_y(Vu)] - \hphantom{(m_y/m_x)} \partial_\eta (\Omega u)
+%%- ({\mu}_d \alpha \partial_x p'
+%%- {\mu}_d \alpha' \partial_x \bar{p}) ~~~~~~~~ </font>
<font color="red">otag
+%%\\
+%%& - (\alpha/\alpha_d) ( {\mu}_d \partial_x \phi'
+%% - \partial_\eta p' \partial_x \phi
+%% + {\mu}_d' \partial_x \phi ) + F_U
\label{u-rhs}
\\
%
-R_V^{t^*} = &
-- m_y[\partial_x (Uv) + \partial_y (Vv)] - (m_y/m_x) \partial_\eta (\Omega v)
-- ({\mu}_d \alpha \partial_y p'
-- {\mu}_d \alpha' \partial_y \bar{p}) ~~~~~~~~ </font>
<font color="red">otag
-\\
-& - (\alpha/\alpha_d) ( {\mu}_d \partial_y \phi'
- - \partial_\eta p' \partial_y \phi
- + {\mu}_d' \partial_y \phi ) + F_V
+R_V^{t^*} = & - m_y\left[\partial_x (Uv) + \partial_y (Vv)\right] - (m_y/m_x) \partial_\eta (\Omega v) & \cr
+& -(m_y/m_x) (\alpha/\alpha_d) \left[ \mu_d (\partial_y \phi' + \alpha_d \partial_y p' + \alpha'_d \partial_y \overline{p}) +
+\partial_y \phi (\partial_\eta p' - \mu'_d)\right]
+%%R_V^{t^*} = &
+%%- m_y[\partial_x (Uv) + \partial_y (Vv)] - (m_y/m_x) \partial_\eta (\Omega v)
+%%- ({\mu}_d \alpha \partial_y p'
+%%- {\mu}_d \alpha' \partial_y \bar{p}) ~~~~~~~~ </font>
<font color="gray">otag
+%%\\
+%%& - (\alpha/\alpha_d) ( {\mu}_d \partial_y \phi'
+%% - \partial_\eta p' \partial_y \phi
+%% + {\mu}_d' \partial_y \phi ) + F_V
\label{v-rhs}
\\
%
@@ -578,29 +590,41 @@
\eqref{u-small-step} -- \eqref{geo-small-step} as
%
\begin{align}
-\delta_{\tau} U'' + \overline{\mu^{t^*}}^x
- \overline{\alpha^{t^*}}^x \delta_x {p''}^\tau
- + (\overline{\mu^{t^*}}^x \delta_x \bar p)\overline{{\alpha''}^\tau}^x
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-</font>
<font color="red">otag \\
- + \overline{(\alpha/\alpha_d)}^x
- [\overline{\mu^{t^*}}^x \delta_x \overline{{\phi''}^\tau}^\eta
- + (\delta_x \overline{\phi^{t^*}}^\eta)
- (\delta_\eta \overline{\overline{p''}^x}^\eta
- -\overline{\mu''}^x)^\tau] &= R_U^{t^*}
+\partial_t U'' + (m_x/m_y)\overline{(\alpha^{t^*}/\alpha^{t^*}_d)}^x \bigg[\overline{\mu_d^{t^*}}^x\bigg(
+\overline{\alpha_d^{t^*}}^x \partial_x {p''}^\tau + \overline{{\alpha_d''}^\tau}^x \partial_x {\overline p}
++ \partial_x \overline{{\phi''}^\tau}^\eta \bigg)
+</font>
<font color="blue">otag &
+\\
++ \partial_x \overline{\phi^{t^*}}^\eta \bigg(\partial_\eta \overline{\overline{{p''}}^x}^\eta - \overline{{\mu''_d}}^x \bigg)^\tau \,\bigg] & = R_U^{t^*}
+%%\delta_{\tau} U'' + \overline{\mu^{t^*}}^x
+%% \overline{\alpha^{t^*}}^x \delta_x {p''}^\tau
+%% + (\overline{\mu^{t^*}}^x \delta_x \bar p)\overline{{\alpha''}^\tau}^x
+%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+%%</font>
<font color="red">otag \\
+%% + \overline{(\alpha/\alpha_d)}^x
+%% [\overline{\mu^{t^*}}^x \delta_x \overline{{\phi''}^\tau}^\eta
+%% + (\delta_x \overline{\phi^{t^*}}^\eta)
+%% (\delta_\eta \overline{\overline{p''}^x}^\eta
+%% -\overline{\mu''}^x)^\tau] &= R_U^{t^*}
\label{u-discrete}
\\
%
-\delta_{\tau} V'' + \overline{\mu^{t^*}}^y
- \overline{\alpha^{t^*}}^y \delta_y {p''}^\tau
- + (\overline{\mu^{t^*}}^y \delta_y \bar p)\overline{{\alpha''}^\tau}^y
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-</font>
<font color="red">otag \\
- + \overline{(\alpha/\alpha_d)}^y
- [\overline{\mu^{t^*}}^y \delta_y \overline{{\phi''}^\tau}^\eta
- + (\delta_y \overline{\phi^{t^*}}^\eta)
- (\delta_\eta \overline{\overline{p''}^y}^\eta
- -\overline{\mu''}^y)^\tau] &= R_V^{t^*}
+\partial_t V'' + (m_y/m_x)\overline{(\alpha^{t^*}/\alpha^{t^*}_d)}^y \bigg[\overline{\mu_d^{t^*}}^y\bigg(
+\overline{\alpha_d^{t^*}}^y \partial_y {p''}^\tau + \overline{{\alpha_d''}^\tau}^y \partial_y {\overline p}
++ \partial_y \overline{{\phi''}^\tau}^\eta \bigg)
+ </font>
<font color="blue">otag &
+\\
++ \partial_y \overline{\phi^{t^*}}^\eta \bigg(\partial_\eta \overline{\overline{{p''}}^y}^\eta - \overline{{\mu''_d}}^y \bigg)^\tau \, \bigg] & = R_V^{t^*}
+%%\delta_{\tau} V'' + \overline{\mu^{t^*}}^y
+%% \overline{\alpha^{t^*}}^y \delta_y {p''}^\tau
+%% + (\overline{\mu^{t^*}}^y \delta_y \bar p)\overline{{\alpha''}^\tau}^y
+%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+%%</font>
<font color="gray">otag \\
+%% + \overline{(\alpha/\alpha_d)}^y
+%% [\overline{\mu^{t^*}}^y \delta_y \overline{{\phi''}^\tau}^\eta
+%% + (\delta_y \overline{\phi^{t^*}}^\eta)
+%% (\delta_\eta \overline{\overline{p''}^y}^\eta
+%% -\overline{\mu''}^y)^\tau] &= R_V^{t^*}
\label{v-discrete}
\\
\delta_\tau \mu_d''
@@ -627,7 +651,7 @@
\label{w-discrete}
\\
\delta_\tau \phi'' + {1\over\mu_d^{t^*}}
-[m_y \Omega''^{\tau+\Delta \tau} \delta_\eta \phi^{t^*} - m_y \overline{g W''}^\tau ]
+[m_y \Omega''^{\tau+\Delta \tau} \delta_\eta \overline{\phi^{t^*}}^\eta - m_y\overline{g W''}^\tau ]
&= {R_\phi}^{t^*},
\label{geo-discrete}
\end{align}
@@ -666,31 +690,40 @@
are discretized as
%
\begin{align}
-R_U^{t^*} = &- ( \overline{{\mu}_d}^x \overline{\alpha}^x \delta_x p'
- -\overline{{\mu}_d}^x \overline{\alpha'}^x \delta_x \bar{p})
--\overline{(\alpha / \alpha_d)}^x
-( \overline{{\mu}_d}^x \delta_x \overline{\phi'}^\eta
- - \delta_\eta \overline{\overline{p'}^x}^\eta \delta_x \overline{\phi}^\eta
- + \overline{{\mu}_d'}^x \delta_x \overline{\phi}^\eta ) </font>
<font color="red">otag \\
-& ~~~~~~~~~~~~~~~~~~~~~~~~~ + F_{U_{cor}} + \hbox{advection} +
-\hbox{mixing} + \hbox{physics},
+R_U^{t^*} =
+ -(m_x/m_y) \overline{(\alpha/\alpha_d)}^x & \left[ \overline{\mu_d}^x (\partial_x \overline{\phi'}^\eta
++ \overline{\alpha_d}^x \partial_x p' + \overline{\alpha'_d}^x \partial_x \overline{p}) +
+\partial_x \overline{\phi}^\eta (\partial_\eta \overline{\overline{p'}^x}^\eta - \overline{\mu'_d}^x)\right] & \cr
+& + F_{U_{cor}} + \hbox{advection} + \hbox{mixing} + \hbox{physics,}
+%%R_U^{t^*} = &- ( \overline{{\mu}_d}^x \overline{\alpha}^x \delta_x p'
+%% -\overline{{\mu}_d}^x \overline{\alpha'}^x \delta_x \bar{p})
+%%-\overline{(\alpha / \alpha_d)}^x
+%%( \overline{{\mu}_d}^x \delta_x \overline{\phi'}^\eta
+%% - \delta_\eta \overline{\overline{p'}^x}^\eta \delta_x \overline{\phi}^\eta
+%% + \overline{{\mu}_d'}^x \delta_x \overline{\phi}^\eta ) </font>
<font color="red">otag \\
+%%& ~~~~~~~~~~~~~~~~~~~~~~~~~ + F_{U_{cor}} + \hbox{advection} +
+%%\hbox{mixing} + \hbox{physics},
\label{u-pg-discrete} \\
%
-R_V^{t^*} = &- ( \overline{{\mu}_d}^y \overline{\alpha}^y \delta_y p'
- -\overline{{\mu}_d}^y \overline{\alpha'}^y \delta_y \bar{p})
--\overline{(\alpha / \alpha_d)}^y
-( \overline{{\mu}_d}^y \delta_y \overline{\phi'}^\eta
- - \delta_\eta \overline{\overline{p'}^y}^\eta \delta_y \overline{\phi}^\eta
- + \overline{{\mu}_d'}^y \delta_y \overline{\phi}^\eta ) </font>
<font color="red">otag \\
-& ~~~~~~~~~~~~~~~~~~~~~~~~~ + F_{V_{cor}} + \hbox{advection} +
-\hbox{mixing} + \hbox{physics},
+R_V^{t^*} =
+ -(m_y/m_x) \overline{(\alpha/\alpha_d)}^y & \left[ \overline{\mu_d}^y (\partial_y \overline{\phi'}^\eta
++ \overline{\alpha_d}^y \partial_y p' + \overline{\alpha'_d}^y \partial_y \overline{p}) +
+\partial_y \overline{\phi}^\eta (\partial_\eta \overline{\overline{p'}^y}^\eta - \overline{\mu'_d}^y)\right] & \cr
+& + F_{V_{cor}} + \hbox{advection} + \hbox{mixing} + \hbox{physics,}
+%%R_V^{t^*} = &- ( \overline{{\mu}_d}^y \overline{\alpha}^y \delta_y p'
+%% -\overline{{\mu}_d}^y \overline{\alpha'}^y \delta_y \bar{p})
+%%-\overline{(\alpha / \alpha_d)}^y
+%%( \overline{{\mu}_d}^y \delta_y \overline{\phi'}^\eta
+%% - \delta_\eta \overline{\overline{p'}^y}^\eta \delta_y \overline{\phi}^\eta
+%% + \overline{{\mu}_d'}^y \delta_y \overline{\phi}^\eta ) </font>
<font color="red">otag \\
+%%& ~~~~~~~~~~~~~~~~~~~~~~~~~ + F_{V_{cor}} + \hbox{advection} +
+%%\hbox{mixing} + \hbox{physics},
\label{v-pg-discrete} \\
%
-R_W^{t^*} = & ~ m_y^{-1} g \overline{(\alpha/\alpha_d)}^\eta [\delta_\eta p'
- + {\bar{\mu}}_d \overline{q_m}^\eta]
- - m_y^{-1} {\mu}_d'g </font>
<font color="gray">otag \\
-& ~~~~~~~~~~~~~~~~~~~~~~~~~ + F_{W_{cor}} + \hbox{advection} +
-\hbox{mixing} + \hbox{buoyancy} + \hbox{physics}.
+R_W^{t^*} = ~ m_y^{-1} g \overline{(\alpha/\alpha_d)}^\eta [\delta_\eta p'
++ & {\bar{\mu}}_d \overline{q_m}^\eta]
+- m_y^{-1} {\mu}_d'g & \cr
+& + F_{W_{cor}} + \hbox{advection} + \hbox{mixing} + \hbox{buoyancy} + \hbox{physics}.
\label{w-pg-discrete}
\end{align}
Modified: trunk/wrf/technote/equation.tex
===================================================================
--- trunk/wrf/technote/equation.tex        2012-01-09 22:51:06 UTC (rev 326)
+++ trunk/wrf/technote/equation.tex        2012-01-10 22:15:09 UTC (rev 327)
@@ -74,8 +74,8 @@
%+ \partial_\eta p \partial_x \phi &= F_U
%% - \partial_x (p\phi_\eta)
%% + \partial_\eta (p\phi_x) &= F_U
-- \partial_x (p\partial_\eta \phi)
-+ \partial_\eta (p\partial_x \phi) &= F_U
+- \partial_x (p\phi_\eta)
++ \partial_\eta (p\phi_x) &= F_U
\label{cartesian_begin}
\\
%
@@ -84,8 +84,8 @@
%+ \partial_\eta p \partial_y \phi &= F_V \\
%% - \partial_y (p\phi_\eta)
%% + \partial_\eta (p\phi_y) &= F_V \\
-- \partial_y (p\partial_\eta \phi)
-+ \partial_\eta (p\partial_y \phi) &= F_V \\
+- \partial_y (p\phi_\eta)
++ \partial_\eta (p\phi_y) &= F_V \\
%
\partial_t W + (</font>
<font color="gray">abla \cdot {\bf V} w )
- g (\partial_\eta p - \mu) &= F_W
@@ -294,17 +294,19 @@
can be written as
%
\begin{align}
-\partial_t U + m_x[\partial_x(Uu) + \partial_y(Vu)] +
-\hphantom{(m_y/m_x)}
+\partial_t U + m_x[\partial_x(Uu) + \partial_y(Vu)] \hphantom{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}
+</font>
<font color="red">otag \\
++ \hphantom{(m_y/m_x)}
\partial_\eta (\Omega u)
-+ \mu_d \alpha \partial_x p
-+ (\alpha/\alpha_d) \partial_\eta p \partial_x \phi & = F_U
++ (m_x/m_y)[\mu_d \alpha \partial_x p
++ (\alpha/\alpha_d) \partial_\eta p \partial_x \phi] & = F_U
\label{u-mom-full}
\\
%
-\partial_t V + m_y[\partial_x (Uv) + \partial_y (Vv)] + (m_y/m_x)\partial_\eta (\Omega v)
-+ \mu_d \alpha \partial_y p
-+ (\alpha/\alpha_d) \partial_\eta p \partial_y \phi & = F_V
+\partial_t V + m_y[\partial_x (Uv) + \partial_y (Vv)] \hphantom{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}
+</font>
<font color="gray">otag \\ + (m_y/m_x)\partial_\eta (\Omega v)
++ (m_y/m_x)[\mu_d \alpha \partial_y p
++ (\alpha/\alpha_d) \partial_\eta p \partial_y \phi] & = F_V
\label{v-mom-full}
\\
%
@@ -429,7 +431,7 @@
the reference state is in hydrostatic balance and is strictly only a
function of $\bar z$. In this manner, $p=\bar p(\bar z)+p'$, $\phi=\bar
\phi(\bar z)
-+\phi'$, $\alpha=\bar \alpha(\bar z) +\alpha'$, and $\mu_d = \bar\mu_d(x,y) +
++\phi'$, $\alpha=\bar \alpha_d(\bar z) +\alpha_d'$, and $\mu_d = \bar\mu_d(x,y) +
\mu_d'$. Because the $\eta$ coordinate surfaces are generally not
horizontal, the reference profiles $\bar p$, $\bar\phi$, and
$\bar\alpha$ are functions of $(x,y,\eta)$.
@@ -440,27 +442,33 @@
\eqref{u-mom-full} -- \eqref{w-mom-full} are written as
%
\begin{align}
- \partial_t U + m_x[\partial_x(Uu) + \partial_y(Vu)] +
+\partial_t U + m_x\left[\partial_x(Uu) + \partial_y(Vu)\right] + \partial_\eta (\Omega u) ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~ ~~~~~~~ ~~ </font>
<font color="red">otag &
\hphantom{(m_y/m_x)}
-\partial_\eta (\Omega u)
-+ ({\mu}_d \alpha \partial_x p'
-+ {\mu}_d \alpha' \partial_x \bar{p}) ~~~~~~~~ </font>
<font color="red">otag &
\\
-+ (\alpha/\alpha_d) ( {\mu}_d \partial_x \phi'
-+ \partial_\eta p' \partial_x \phi
-- {\mu}_d' \partial_x \phi )
- &= F_U
++(m_x/m_y) (\alpha/\alpha_d) \left[ \mu_d (\partial_x \phi' + \alpha_d \partial_x p' + \alpha'_d \partial_x \overline{p}) +
+\partial_x \phi (\partial_\eta p' - \mu'_d)\right] = F_U
+%%+ ({\mu}_d \alpha \partial_x p'
+%%+ {\mu}_d \alpha' \partial_x \bar{p}) ~~~~~~~~ </font>
<font color="red">otag &
+%%\\
+%%+ (\alpha/\alpha_d) ( {\mu}_d \partial_x \phi'
+%%+ \partial_\eta p' \partial_x \phi
+%%- {\mu}_d' \partial_x \phi )
+%% &= F_U
\label{u-mom-pert}
\\
%
-\partial_t V + m_y[\partial_x (Uv) + \partial_y (Vv)] + (m_y/m_x) \partial_\eta (\Omega v)
-+ ({\mu}_d \alpha \partial_y p'
-+ {\mu}_d \alpha' \partial_y \bar{p}) ~~~~~~~~ </font>
<font color="blue">otag &
+\partial_t V + m_y[\partial_x (Uv) + \partial_y (Vv)] + (m_y/m_x) \partial_\eta (\Omega v) ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~ </font>
<font color="red">otag &
\\
-+ (\alpha/\alpha_d) ( {\mu}_d \partial_y \phi'
-+ \partial_\eta p' \partial_y \phi
-- {\mu}_d' \partial_y \phi )
- &= F_V \\
++(m_x/m_y) (\alpha/\alpha_d) \left[ \mu_d (\partial_x \phi' + \alpha_d \partial_x p' + \alpha'_d \partial_x \overline{p}) +
+\partial_x \phi (\partial_\eta p' - \mu'_d)\right] = F_U
+\\
+%%+ ({\mu}_d \alpha \partial_y p'
+%%+ {\mu}_d \alpha' \partial_y \bar{p}) ~~~~~~~~ </font>
<font color="blue">otag &
+%%\\
+%%+ (\alpha/\alpha_d) ( {\mu}_d \partial_y \phi'
+%%+ \partial_\eta p' \partial_y \phi
+%%- {\mu}_d' \partial_y \phi )
+%% &= F_V \\
%
\partial_t W + (m_x m_y/m_y) [\partial_x (Uw) + \partial_y (Vw)] + \partial_\eta
(\Omega w) ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~ </font>
<font color="black">otag &
</font>
</pre>