<p><b>skamaroc</b> 2007-01-11 14:14:20 -0700 (Thu, 11 Jan 2007)</p><p>corrections for chapter 3<br>
</p><hr noshade><pre><font color="gray">Modified: trunk/wrf/technote/discretization.tex
===================================================================
--- trunk/wrf/technote/discretization.tex        2007-01-09 19:51:34 UTC (rev 24)
+++ trunk/wrf/technote/discretization.tex        2007-01-11 21:14:20 UTC (rev 25)
@@ -120,7 +120,7 @@
 \end{equation}
 %
 </font>
<font color="gray">oindent
-where $C=c_s^2/\mu^{t^*}{\alpha^{t^*}}^2$. This linearization about the most
+where $C=c_s^2/\mu^{t^*}{\alpha^{t^*}_d}^2$. This linearization about the most
 recent large time step should be highly accurate over the time interval of
 the several small time steps.
 
@@ -159,17 +159,15 @@
 \label{theta-small-step}
 \\
  \delta_\tau W'' 
-- m^{-1} g\overline{\biggl[(\alpha/\alpha_d)^{t^*} 
+- m^{-1} g\overline{\left[(\alpha/\alpha_d)^{t^*} \biggl[
      \partial_\eta (C \partial_\eta \phi'') 
-   + \partial_\eta\biggl({c_s^2\over\alpha^{t^*}}{\Theta''\over\Theta^{t^*}}\biggr)
-- \mu_d''\biggr]}^\tau
+   + \partial_\eta\biggl({c_s^2\over\alpha^{t^*}}{\Theta''\over\Theta^{t^*}}\biggr)\biggr]
+- \mu_d''\right]}^\tau
                                                    &amp;= {R_W}^{t^*}  
 \label{w-small-step}
 \\
- \delta_\tau \phi'' + {1\over\mu_d^{t^*}}
-[
-% m^2 (U''\phi_x^{t^*} + V''\phi_y^{t^*})^{\tau+\Delta \tau} +
-m \Omega''^{\tau+\Delta \tau}\phi_\eta  - \overline{g W''}^\tau ] 
+ \delta_\tau \phi'' + {1\over\mu_d^{t^*}} 
+[ m \Omega''^{\tau+\Delta \tau}\phi_\eta^{t^*}  - \overline{g W''}^\tau ] 
 &amp;= {R_\phi}^{t^*}.
 \label{geo-small-step}
 \end{align}
@@ -288,7 +286,9 @@
 \eqref{geo-small-step}
 are combined to form a vertically implicit equation that is solved for
 ${W''}^{\tau+\Delta\tau}$ subject to the boundary condition
-$W''={\hbox{\bf V}''}\cdot{</font>
<font color="blue">abla}h$ at the surface ($z=h(x,y)$) and $p'=0$ 
+%$W''={\hbox{\bf V}''}\cdot{</font>
<font color="gray">abla}h$ 
+$\Omega = \Omega'' = 0$
+at the surface ($z=h(x,y)$) and $p'=0$ 
 along the model top. ${\phi''}^{\tau+\Delta\tau}$ is  then
 obtained from \eqref{geo-small-step}, and ${p''}^{\tau+\Delta\tau}$ and 
 ${\alpha_d''}^{\tau+\Delta\tau}$ are recovered from \eqref{p-linear}
@@ -609,8 +609,7 @@
 \label{w-discrete}
 \\
  \delta_\tau \phi'' + {1\over\mu_d^{t^*}}
-[
- m \Omega''^{\tau+\Delta \tau} \delta_\eta \phi  - \overline{g W''}^\tau ] 
+[m \Omega''^{\tau+\Delta \tau} \delta_\eta \phi^{t^*}  - \overline{g W''}^\tau ] 
 &amp;= {R_\phi}^{t^*},
 \label{geo-discrete}
 \end{align}

</font>
</pre>