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Abstract

The authors use the Method for Object-based Diagnostic Evaluation (MODE) to compare 

forecasts made from two models, representing separate cores of the Weather Research and 

Forecasting (WRF) model, during the 2005 National Severe Storms Laboratory and Storm 

Prediction Center Spring Program. Both models, the Advanced Research WRF (ARW) and the 

Nonhydrostatic Mesoscale Model (NMM) were run without a traditional cumulus 

parameterization scheme on horizontal grid lengths of 4 km (ARW) and 4.5 km (NMM).  MODE

was used to evaluate 1-h rainfall accumulation from 24-h forecasts valid at 00 UTC on 32 days

between 24 April and 4 June, 2005. The primary variable used for evaluation was a “total 

interest” derived from a fuzzy-logic algorithm that compared several attributes of forecast and 

observed rain features such as separation distance and spatial orientation. The maximum value 

of total interest obtained by comparing an object in one field with all objects in the comparison 

field was retained as the quality of matching for that object. The median of the distribution of all 

such maximum-interest values was selected as a metric of overall forecast quality. 

Results from the 32-cases suggest that, overall, the configuration of the ARW model used 

during the 2005 Spring Program performed slightly better than the configuration of the NMM

model. The primary manifestation of the differing performance was fewer false alarms, forecast 

rain areas with no observed counterpart, in the ARW.  However, it was noted that the 

performance varied considerably from day to day with most days featuring indistinguishable 

performance. Thus, a small number of poor NMM forecasts produced the overall difference 

between the two models. 
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1. Introduction

Recent work by numerous authors has highlighted a series of novel methods for verifying 

numerical prediction of highly localized, irregular fields such as precipitation. These novel 

methods are summarized in a companion article by Gilleland et al. (2009). Several methods fall 

under the heading of displacement verification methods, wherein spatial structures are examined 

objectively. Perhaps the most well-known methods of this type are those that make fluid flow 

analogies to map the forecast field to the observed field (Hoffman et al. 1996; Keil and Craig

2007) and features-based methods (Ebert and McBride 2000; Davis et al. 2006, hereafter D06) 

that treat forecast and observed precipitation regions as discrete features with identifying 

attributes (shape, location, intensity, etc.). 

The present paper expands on the method summarized in D06, now referred to as the 

Method for Object-based Diagnostic Evaluation (MODE)2. MODE represents a class of spatial 

verification methods whose objective is to identify localized features of interest in scalar fields 

and compare features in two fields to identify which features best correspond to each other. 

When objects have been identified and categorized, statistics of the similarity of objects in the 

two datasets are computed. In this sense, MODE can be considered a rudimentary algorithm for 

image processing and image matching, but developed for meteorological applications. The 

degree of similarity between forecast and observed objects provides a measure of forecast 

quality. The philosophy behind the development of MODE has been to develop a procedure that 

mimics what a human expert would do to find features and decide whether a given feature in a 

forecast represents an analogous feature in the observations. The decision about matching a 

  
2 Documentation of MODE can be found at 
http://www.dtcenter.org/met/users/docs/users_guide/MET_Users_Guide_v1.0.pdf
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forecast and observed object is generally done from the perspective of a forecaster or user of the 

information. Because there are many different users, and because each user will bring a unique 

perspective to bear on the matching decision, it may be preferable not to demand a single, 

dichotomous outcome for matching. In some situations a binary decision about matching is 

necessary, but we will consider matching more generally as an inherently “fuzzy” process where 

it is more likely or less likely, but never certain. This simply reflects the fact that no forecast 

provides a perfect representation of an observed feature and there is always uncertainty in the 

observations.

As we will demonstrate, it is possible to derive statistics about forecast quality even if we 

do not make a binary decision about whether a forecast feature matches an observed feature. 

Once a decision about matching is made, however, additional metrics of the quality of the 

forecast can then be derived. These mainly involve geometric properties of the objects, but also 

involve intensity as determined in the present context by the distribution of rainfall accumulation 

within an object. 

The goal of the present paper is a comparison, using MODE, of numerical forecasts made 

by two different models, the Nonhydrostatic Mesoscale Model (NMM) and the Advanced 

Research WRF model (ARW). Both models exist within the overarching WRF software 

framework, but for purposes of this study, they are considered independent models. These are 

described further in section 3. Results from the MODE-based evaluation will be compared with 

subjective impressions of differences in forecast quality. 

Following a description of the object identification, matching and merging procedures 

that MODE comprises, we will present results from idealized cases where objects have simple 

geometric properties and differences between synthetic forecast and observed features are 
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prescribed. We will then present results from a nine-case sample obtained from the 2005 

NSSL/SPC Spring Program. These are the same nine cases discussed in more detail by 

Ahijevych et al. (2009; hereafter A09). Then we will consider the overall performance of the 

ARW model and the NMM for 32 days on which both models produced forecasts. 

2. MODE and idealized examples

The first step in MODE is to identify objects on a two-dimensional field such as 

precipitation rate or precipitation accumulation. The procedure is described in detail by D06. 

Object identification is done through the application of a convolution operator, governed by a 

convolution radius (R), and a threshold (T) on the intensity of the field. The convolution step is 

effectively a smoothing operation. The parameter R is expressed in units of grid increments, and 

T carries units of the field being evaluated (mm in the case of rainfall). These steps serve two 

purposes: (1) to make areas more contiguous than in the original field; and (2) to filter out small 

or weak features of precipitation if the user is not interested in them. Once the forecast and 

observed objects are defined using the convolution and thresholding procedure, the original 

intensity of the field is restored at points within objects.

The convolution and thresholding operations effectively select the portion of the field that 

is of greatest interest to the user of the method, and therefore there is not necessarily a 

universally optimal choice for these parameters. Minimal smoothing and a very low threshold 

will result in a large number of objects, many of them small. Heavy smoothing and a high 

threshold will result in very few, intense rain areas. We identify R with the minimum spatial 

scale of interest and T with the minimum rainfall intensity of interest. These parameters are user-
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defined, but we will show that the dependence of MODE-derived metrics of forecast quality on 

these parameters is a useful diagnostic for understanding the performance of models.  That is, for 

what spatial scales and intensities does a given model perform best, or where does it perform 

better than a competitor?

The primary addition to MODE beyond what was described by D06 includes a more 

sophisticated algorithm for matching and merging objects in the forecast and observed field. 

While D06 included simple matching rules based only on the distance separating the centroids of 

forecast and observed objects, MODE employs a fuzzy-logic system that considers numerous 

attributes in identifying a match between forecast and observed objects. The present application 

of MODE also recognizes that the choice of a threshold can affect whether objects are 

contiguous or discrete. The overarching goal is to mimic the decision process that a human 

exercises in concluding whether a match has occurred. However, it is clear that no two humans 

will use the same criteria applied exactly the same way. For this reason, we will not rely entirely 

on a binary decision about matching that may rest on somewhat arbitrary choices. We will 

consider the likelihood that a given pair of objects constitutes a match and utilize the distribution 

of such likelihood values among all possible pairs of objects to derive an assessment of relative 

model skill. 

For any forecast and observed object pair, a fuzzy-logic algorithm is used to derive a 

value of what we will call “total interest”. Total interest for the jth object pair is defined:
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Here F is the interest function that prescribes, on a scale from 0 to 1 with 1 being perfect, how 

closely a forecast attribute matches the observed attribute. The coefficient w is the weight 
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assigned to that interest function and c is a function of attributes that describes the confidence in 

a partial interest value obtained from wiFi,j.  Total interest comprises M interest functions that 

compare attributes of each object pair. The attributes we consider are: (a) centroid distance 

separation; (b) minimum separation distance of object boundaries; (c) orientation angle 

difference; (d) area ratio and (e) intersection area. The orientation angle is the angle that the long 

axis of the object makes with respect to the grid direction (i.e, the ‘x’ direction, which is nearly 

east-west in the present study). The area ratio is the area of the smaller of two objects divided by 

the area of the larger, hence it is forced to lie between 0 and 1. The intersection area is the 

fraction of overlap area normalized by the average of the areas of the two objects and is also 

bounded by 0 and 1. The confidence (ci), which represents how well a given attribute describes 

the forecast error, is unity for all attributes except orientation angle and centroid separation. 

Non-trivial confidence functions are described in Appendix A. 

The overall assumption is that the more alike the two objects are as measured by the 

above attributes, the more likely the forecast object is a numerical representation of the observed 

member of the pair (and not some other feature in the observed field). Total interest assumes a 

value between 0 and 1 and may be interpreted as the likelihood of a match, but it is not strictly a 

probability.

In the schematic shown in Fig. 1, there are two observed rain areas and three forecast 

areas, one of which is notably smaller than the others. Also shown is a hypothetical total interest 

value for each forecast-observed object pair. In this example, we have assumed that a match 

occurs when the total interest is 0.7 or greater.  This tunable value has been chosen to represent 

mesoscale systems, but a greater value might be selected in consideration of rainfall over local 

watersheds or urban areas, for example, where a closer match between forecast and observed 
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objects is necessary for a forecast to be considered high quality. Using this threshold, forecast 

object 1 matches observed objects 1 and 2. Forecast object 2 matches observed object 2. 

Forecast object 3 is unmatched, primarily owing to its small size relative to other objects. 

Because a “double match” exists with forecast area 1, observed areas 1 and 2 are viewed as a 

“cluster”. In addition, because one of the objects in this cluster also matches forecast area 2, 

forecast areas 1 and 2 also form a cluster. Forecast area 3 matches no observed object and is not 

part of any cluster.

Not shown in Fig. 1 is an additional factor used for potentially merging multiple objects 

in a given field into a single cluster. We consider the contiguous area within objects defined with 

the same R, but a threshold of T/4.  The lower threshold results in larger rain areas and will 

sometimes connect features that do not touch when using the threshold T. In these cases, the 

objects defined with the threshold T are merged. The motivation is to allow nearby features to be 

considered as part of a larger-scale entity. The use of this “double thresholding” technique only 

affects merging of objects within a given field and therefore affects what is included in object 

clusters. However, the total interest for pairs of simple objects is still computed based on objects 

derived from the threshold T.

In the present paper we will derive verification scores from total interest values for 

forecast and observed pairs of simple objects rather than for clusters. Clusters are perhaps more 

intuitive groupings of features, and will appear in figures in the present paper as a convenient 

means of visualizing corresponding features in forecasts and observations. However, statistics 

will be computed based entirely on simple objects.

A useful metric of forecast quality is the maximum interest value attained for each 

forecast or observed object, corresponding to the maximum values across rows or down 
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columns, respectively, in the matrix in Fig. 1. By aggregating values of maximum interest over 

all objects in a sample, one obtains a metric that can be used to compare forecasts from different 

models. This metric is the median of the distribution of maximum interest values, referred to as 

the median of maximum interest (MMI). The MMI can be computed with respect to the forecast 

objects (MMIF) or the observed objects (MMIO). The MMIF finds the maximum interest across 

each row of the interest matrix. In this case, those values are 0.9, 0.8 and 0.55, with a median 

value of 0.8. The median rather than the mean is used to reduce the impact of outliers and 

because there is no basis to assume any particular underlying distribution of the data. The 

MMIO is computed from the maximum interest values in each column, 0.9 and 0.8, yielding 0.85 

(assuming linear interpolation between ranks 1 and 2). Note that MMIO and MMIF will not 

generally be equal. False alarms will lower the MMIF whereas misses will lower the MMIO. In 

the simple example here, there were no missed events. For a single statistic, hereafter simply 

MMI, the distributions of maximum interest values from the forecasts and observations are 

joined, yielding a rank ordered set {0.55, 0.8, 0.8, 0.9, 0.9} whose median is 0.8. The full 

distribution of maximum interest values is typically aggregated over several tens of objects at a 

single time, and over several tens of days. An advantage of using the MMI as a metric of quality 

is that it does not depend on imposing any matching threshold and takes into account all of the 

attributes used in the calculation of total interest.

As a relatively simple example of quantitative results from MODE, consider the synthetic 

forecasts and observations presented in Fig. 2. These particular examples also appeared in D06

and A08. The Gilbert Skill Score (GSS, also known as the equitable threat score; Schaefer 

1990), which measures the amount of overlap between two fields, is slightly negative for each of 

the first four forecast examples (Fig. 2b, c, d, e). Herein we simply use the letter representing the 
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panel of Fig. 2 to denote each case. The negative score arises because there is no overlap 

between the forecast and observed fields, and this is less overlap than would be expected by 

chance. Although the use of a particular forecast ultimately determines the utility, for most 

applications it is probably true that the forecast in (b) is a better forecast than, say, the forecast in 

(d) because it has a smaller displacement error and zero intensity bias. Only (f) reveals a positive 

GSS owing to the overlap between the forecast and observed “precipitation” areas. 

The ordering of forecast quality is substantially different with MODE. The forecast with 

the greatest total interest is (b) in which the position offset is small and the structural match is 

exact. The forecast with the smallest interest is (c) in which the position offset is large. Example 

(f) is not the poorest forecast (as some might assume) because the algorithm as applied here is 

weighted toward position errors and also gives some “credit” for overlap. Giving substantially 

less weight to the intersection area and more weight to the area ratio would have allowed the 

total interest in (d) to exceed that in (f).

A potentially counterintuitive result is that the forecast in (e) has a lower total interest 

than in (d). Much of the distinction between (d) and (e) comes from the confidence assigned to 

attributes of centroid separation and angle difference. Recall from (1) that the denominator of the 

expression for total interest is the sum of the product of weight and confidence. For a round 

object, as in (d), we have no confidence in the angle assigned. The angle-difference term 

therefore drops out of both numerator and denominator. In case (e), the angles are well defined. 

The 90-degree difference yields a partial interest value of zero, but the denominator still retains 

the weight of the angle-difference term. This fact tends to lower the total interest in (e) compared 

with (d). Centroid displacement affects results in a similar way because the confidence value is 

equal to the area ratio (Appendix A). For objects differing greatly in size, the contribution of the 
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weight of centroid separation to the denominator of (1) will be reduced. The fact that the area 

ratio is poorly predicted in (d) limits the numerator of (1), but not enough to make the total 

interest smaller in (d) than in (e). 

There is no “correct” answer in these geometric cases, but the results discussed here 

indicate some of the possible sensitivities of the MODE algorithm. The influence of different 

attributes on the total interest should be selected to represent the aspects of the forecast that are 

most important to the user of the forecast. The preceding analysis also illustrates that MODE 

produces results in these idealized cases that are probably more consistent with subjective 

evaluation than does the ETS metric. 

3. Evaluation of numerical forecasts

a. Evaluation of forecasts for nine cases

The focus of the remainder of the present paper is the application of MODE to a 

comparison of numerical forecasts produced by the NMM and ARW models. The ARW model 

(Skamarock et al. 2005) is a nonhydrostatic, terrain-following, mass-coordinate model that was 

integrated with a grid increment of 4 km. The NMM (Janjic 2004), integrated in a mass-based, 

terrain-following coordinate, utilized a grid increment of 4.5 km. Physical parameterizations in 

each model configuration are summarized in Table 1 (adapted from Baldwin and Elmore 2005). 

Additional information about the setup of the models may be found in Baldwin and Elmore 

(2005) and Kain et al. (2008).

Both models were integrated daily beginning at 00 UTC during the 2005 NSSL/SPC 

Spring Program from 18 April to 3 June (Baldwin and Elmore 2005). Here we examine only 
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one-hour precipitation accumulations from 24 h forecasts valid at 00 UTC (that is, precipitation 

accumulated from 23-24 hours of the forecast). The time 00 UTC, early evening, is typically 

when convection is intensifying and organizing across much of the central U.S. Forecasts were 

not available from both models on all days during the Spring Program. A total of 32 forecasts 

were evaluated during the period from 23 April to 4 June. Nine of these are discussed in detail 

by A09.

Precipitation forecasts and observations valid 00 UTC 1 June, 2005, one of the nine cases 

discussed in A09, are summarized in Fig. 3. The Stage II precipitation analyses were used as 

observations (Lin and Mitchell, 2005). The precipitation from the NMM model (hereafter the 

NMM4 model) and ARW model (hereafter the ARW4 model) was interpolated to the Stage II

grid using bilinear interpolation. The interpolated precipitation fields suggest an elongated 

synoptic-scale precipitation system extending from the Texas Panhandle into the upper Midwest

forming a general arc shape. Within this broad area, the ARW4 indicates two concentrations of 

rainfall whereas the NMM4 produces one larger contiguous rain area with a smaller area over 

western Texas and eastern New Mexico. Some of the smaller rain areas remain unmatched, 

especially those in the NMM4 model observations.

The differences in matching that occur with each of the two models can be understood in 

terms of the interest functions for each forecast-object pair. The large rain area in the NMM4

forecast (green) matches only the area of convection centered over the intersection of Iowa, 

Nebraska, Kansas and Missouri. However, the arc-shaped system observed over Oklahoma is 

not matched in the NMM4 forecast. The reasons are that the centroid of the NMM4 rain area is 

in central Kansas, rather far from the centroid of the observed feature, and that there is a 

significant size mismatch between the two features. Both of these detract from the total interest, 
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which turns out to be 0.64 for this pair of objects. If the total interest had been above 0.7, the 

observed area over Oklahoma would have matched the large area in the NMM4 forecast. In this 

case, the large area in the NMM4 forecast would match the two regions, one over Oklahoma, the 

other near the intersection of Nebraska, Iowa, Kansas and Missouri. These two observed regions

would then be considered part of the same cluster. But the fact that they are not results from the 

NMM4 model predicting an area that is too large and not sufficiently similar in structure to the 

observed features. The ARW4 model predicts a clear break between the rain areas over 

northeastern Kansas and eastern Nebraska and a rain area over central and western Oklahoma 

and the Texas Panhandle. This break, being more like the observations, results in a better overall 

match in this case. On the other hand, the ARW4 model produces only a weak convective cell 

over eastern New Mexico that does not survive the convolution and thresholding process, and the 

storm area therefore appears as a missed event. In this region, the NMM4 model produces cells 

with areas and intensities closer to those observed than does the ARW4 model.

The results shown in Fig. 3 are obtained with a particular choice of convolution radius 

(R) and threshold (T). It is instructive to examine the performance of each model across a range 

of these parameters, thereby considering the performance of models for different spatial scales 

and different intensities. The results are summarized with MMI values plotted as a function of R

and T in Fig. 4. Near the origin (lower left corner), there is essentially no filtering of the original 

data. The number of objects is greatest in this region of the plot. Few if any objects are found in 

the upper right corner, where the convolution radius is large (strong smoothing) and the 

threshold is high (only large, heavy rain areas can pass through the filter). With increasing 

convolution radius along the abscissa, more smoothing is applied so there tend to be fewer, 
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larger rain areas. With increasing threshold near the ordinate, there are fewer areas from which 

only the most intense portions are retained. 

For the case of 1 June, it can be seen in Fig. 4 that there is a broad swath of higher MMI 

values for the ARW4 model extending horizontally for thresholds near 1 mm. There is a 

suggestion that the relatively large values of MMI are found at higher thresholds for convolution 

radii between 5 and about 15 grid lengths (20-60 km). In D06, it was suggested that a 

convolution radius around 5 grid lengths was reasonable for highlighting mesoscale convection 

features. Relatively larger values of MMI are found in the NMM4 model only for the smallest 

thresholds. Both models tend toward low MMI values in the upper-right portion of the plot 

because there are essentially no objects. For modest threshold values, the MMI increases with 

convolution radius. This is consistent with enhanced forecast quality when predicting features 

on larger scales. 

It should be emphasized that the types of errors seen here may vary from case to case. 

Some of the apparently sensitive dependence of matching on object intensity or contiguousness 

tends to average out unless one of the models has a systematic bias to make contiguous rain areas 

that are too large, for instance. Thus it is important to view statistics over a reasonably large 

sample of cases before any conclusions can be drawn. The nine-case sample discussed in A09

offers an extension of the number of cases, but for which a more detailed analysis of individual 

cases is still possible. 

We applied MODE to the 9 cases (April 26; May 13, 14, 18, 19 and 25; June 1, 3, and 4) 

and examined the MMI metric (Fig. 5). For most cases, the MMI was between 0.6 and 0.7. 

However, the forecasts valid at 00 UTC on 13 May and 4 June are both notably poorer in the 

NMM4 model. From the summary of the objects for each case (Figs. 6 and 7), it is apparent that 
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the NMM4 model produced regions of convective cells or small convective systems that were 

not present in the observations. For instance, at 00 UTC 13 May numerous rain areas predicted 

by NMM4 were grouped into a cluster (green) that matched one tiny cell in the observations over 

the eastern part of the domain. This occurred because one cell in the forecast was close enough to 

the observed cell that a match was found, and the proximity of forecast cells to that one matching 

cell resulted in a cluster of merged areas in the forecast. However, the interest values for most of 

the simple objects in the cluster paired with the tiny observed cell were small, mainly due to 

large centroid separation, boundary separation and discrepancies in object sizes. Such an 

overprediction of the number of objects adds numerous rows to the interest matrix (e.g., Fig. 1) 

and the physical discrepancies between forecast and observed objects mean that the maximum 

interest values in those rows are small. The distribution of maximum interest values, keyed on 

the forecasts, thus gains a large number of small values, pulling the MMIF (and hence the MMI) 

toward lower values. A similar situation occurred with the NMM4 forecast on June 4 where a 

large number of small rain areas were erroneously predicted over the northern and southeastern 

parts of the domain.

However, from the perspective of the observed objects, the one small green-colored 

object in Fig. 6b matches well with one object in the forecast, so the distribution of maximum 

interest values keyed on the observations gains a high value and MMIO is actually increased. But 

being only a single object, this cannot raise the MMI significantly. On 4 June, there are no 

observed objects in these regions, so the MMIO and MMI are unaffected. Thus the difference in

forecast quality, as summarized by the MMI metric in Fig. 5, can be isolated to the MMIF (e.g.

maximum interest across rows of the interest matrix) in these two cases. For the May 13 case, 

the ARW4 and NMM4 values of MMIF were 0.59 and 0.49, respectively. For the 4 June case, 
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the values were 0.67 and 0.42. It turns out that the MMIO values (median of maximum interest 

down columns of the interest matrix) were larger than the MMIF values for both models on May 

13 (0.75 and 0.77, respectively), and for the NMM4 model on June 4 (0.70). Both models erred 

more by false alarms than by misses on these days.

In the study of A09, “traditional” skill scores were applied to each of the nine cases noted 

above. The Gilbert Skill Score (also referred to as equitable threat score; Schaefer 1990) applied 

to the NMM4 forecasts was lowest for 18 May, 1 June and 4 June (Fig. 6 from A09), whereas the 

MMI metric from MODE was notably lower than other values only on 4 June. The reason for 

this behavior becomes clear upon examination of Fig. 8, which shows the rain areas derived from 

the NMM4 and Stage IV data using MODE for 18 May. While the forecast rain area over the 

Dakotas is spatially close to what is observed, there is essentially no overlap between the forecast 

and observed rain areas. Thus, the traditional verification approach indicates nearly zero skill. 

However, the NMM4 forecast quality derived from MODE is comparable to other cases 

considered to be “good forecasts” by subjective and traditional evaluation metrics (A09).  The 18 

May case appears to be a real-atmosphere counterpart to the example in Fig. 2b and it 

accentuates the difference in interpretation between a traditional method and a spatial 

verification method such as MODE.

b. Evaluation of 32 cases

1) MAXIMUM OF MEDIAN INTEREST

To examine a still larger sample, we aggregate the MMIF and MMIO metrics over 32 

cases (see Appendix B) during the 2005 Spring Program. Each of these 32 cases represents a 24-
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h forecast of hourly rainfall accumulation valid at 00 UTC. These MMIF and MMIO values 

appear in Table 2 along with the number of forecast objects in the sample. Because results will 

vary with the choice of R and T, we examine a realistic range of these parameters. The MMIF

metric (Table 2) is generally higher for the ARW4 forecasts than for the NMM4 forecasts. The 

MMIO values were similar overall between the two models, and larger than the MMIF values, 

especially the NMM4 model. A Wilcoxon rank sum test was applied to the distributions 

underlying the MMIF values. We found that the null hypothesis that the maximum interest 

values from each model were drawn from the same distribution could be rejected with greater 

than 99% confidence. This was true for each value of R and T. From this perspective, the 

forecast quality of the ARW4 model was greater. 

Also shown in Table 2 is the number of forecast objects for each choice of R and T. It is 

clear that the NMM4 model predicts far more discrete rain areas than the ARW4 model. It turns 

out that both models produce too many objects, but the NMM4 model errs in this regard by 

roughly a factor of 2 whereas the number of objects in the ARW4 is about 30% greater than 

observed. 

2) BIASES IN AREA AND INTENSITY

The number of rain areas, by itself, is not necessarily indicative of a problem with the 

forecast because a high-resolution forecast might be expected to produce more areas than a 

coarse-resolution forecast. However, in the present case, both observations and models are 

projected onto the same grid (preserving area-mean rainfall), with the same convolution and 

threshold parameters. This suggests that the character of convection, particularly in the NMM4

model, is rather different than observed. This finding is further supported by examining the error 
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in the total area of the objects, expressed as the ratio of total forecast rain area within objects to 

the total observed rain area within objects. From Table 3, it is apparent that the NMM4 model 

has a bias as large as 3 by this measure, whereas the ARW4 model is also biased in the same 

sense, but the departure of the bias from unity is typically about 1/3 of the bias of the NMM4

model. The bias is generally largest for the large, intense rain areas. In the NMM4 model, the 

bias in the number of objects is roughly a factor of two, but the bias in area is generally larger 

than a factor of 2. This suggests that not only are there too many forecast areas, but the forecast 

areas are too large. A similar conclusion pertains to the ARW4 model, but the biases therein are 

considerably smaller. 

From Table 4 it is also apparent that the fraction of the rain area within matched objects 

decreases as the threshold increases, particularly for large, intense rain areas. Not only is there a 

smaller total area that survives the convolution and thresholding procedure, but the fraction of 

that area that resides within matching forecast or observed objects also decreases with increasing 

rainfall threshold. The errors exemplified in Table 4, together with the results of Tables 2 and 3, 

imply that the more intense rainfall features tend to be overpredicted by the models, particularly 

the NMM4 model, and the more intense areas often have no counterpart in the observations.

We can also compare the distribution of rainfall intensity within the rain areas. We 

consider percentiles of the rainfall distribution are considered for each object and focus on the

90th percentile to indicate whether forecasts have a realistic fraction of heavier rainfall amounts 

within rain areas. There was a positive bias in both models, with the 90th percentile in the 

NMM4 and ARW4 models being 11.9 and 11.3 mm, respectively, whereas the observed 90th

percentile was 9.7 mm. This result is only for simple objects that match using a total interest 

threshold of 0.7. It should be noted that intensity was not used as a matching criterion. The bias 
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of 1.16 in the ARW4 model is somewhat smaller than noted in D06b for forecasts integrated on a 

similar 4-km grid with an earlier version of the ARW model.

3) OBJECT-BASED GILBERT SKILL SCORE

An alternative, object-based, summary metric of model performance is the Gilbert Skill 

Score (GSS) derived from the number of matched simple objects (hits) Nm, total forecast objects 

Nf, and unmatched observed objects (misses) M:

,m

f

NGSS
N M

ε
ε

−
=

+ −
(2)

where ε is the number of hits expected due to random guessing. This GSS application differs 

from the traditional application of the GSS in precipitation verification because the evaluation

here is performed for objects rather than individual grid cells. We present the object-based GSS 

because it has a statistical link with traditional verification metrics but retains the advantage of 

the object-based perspective. 

While ε is trivial to compute in the traditional, grid-point-based application of the GSS, 

its meaning is not so obvious in terms of objects. Perhaps the best way to estimate ε for the 

object-based GSS is to compare a large sample of forecast and observed fields randomly chosen 

but drawn from the same model and observed climatologies as the forecasts and observations we 

wish to evaluate. Wernli et al. (2008) pursued a similar strategy in their object-based verification 

study. Given a sufficient statistical sample, which may require running MODE through hundreds 

of cases, we can develop statistics of randomly matched objects. 

A more expedient approach is to use the statistics of observed rain areas directly. It turns 

out that observed rain-areas occupy about 1% to 1.5% of the total geographic area in our dataset

at any time. However, matching does not require overlap, so practically speaking, objects that 



20

nearly touch but have no overlap will be matched. A relevant area for considering matching is

roughly four times the object area3. Therefore the effective fraction of area occupied for the 

purpose of matching, fA, is roughly 5% of the total area. Using this definition, the “null” 

fractional area is 95% of the domain. This means that, on average, 95% of the domain is empty, 

meaning that a forecast object placed in this area would be unmatched. If we accept that 5% of 

the domain is the effective “size unit” of an object, then there would be 19 such “size units” in 

the 95% of the domain that is empty. That is, there would be 19 “null” objects for every observed 

object. In terms of the fraction area of an observed object, fA, and No (the number of observed 

objects), the number of “null” objects is (1- fA)No /fA =19 No. 

The above definition of a null object allows us to compute the number of matches that 

will occur due to chance. This number is generally expressed as

,f o

f

N N
N M D

ε =
+ +

(3)

where D is the number of correct null forecasts (i.e. correctly predicting that no object will 

occur). We represent D as the number of null observations minus the number of forecast objects 

(because forecast objects cannot be correct null forecasts);

(1 ) .A o
f

A

f ND N
f

−
= − (4)

  
3 Consider on observed object represented by a circle of radius r centered at the origin. A 
forecast object will just touch the observed object if it is centered at a radius 2r. Therefore, a 
forecast object placed anywhere within a radius of 2r from the center will match. If A is the area 
of the observed object, then a forecast object placed anywhere within an area of 4A will result 
in a match. For matching not to occur, the forecast object would need to be centered outside 
an area 4A centered on the observed object. Thus the effective “cross section” of the observed 
object is roughly 4A, not A. In practice, because matching can occur even if forecast and 
observed objects do not touch, the effective region where matching would occur is somewhat 
larger than 4A.
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Using the above expressions, we can compute the GSS for object matching. The chance of a 

correct random forecast with the above assumptions works out to be about 10% of the hits from 

the NMM4 forecasts and about 5% of the hits from the ARW4 forecasts. Including this 

definition of matches due to chance, both models attained a GSS of 0.42 when aggregated over 

the 32-day period. Here it was assumed that a match occurred when the total interest for a 

forecast-observed object pair was at least 0.7. As indicated by A09, the traditional GSS values 

were typically around 0.1. One reason for difference in the two sets of values is that spatial 

overlap of forecast and observed objects is not required to achieve a positive score in the object-

based GSS, but such overlap is essential in the traditional application of the GSS.

Regional performance of both models was also examined using the object-based GSS.  

We divided the forecast domain into nine regions (Fig. 9) based on tertiles of the distributions of 

latitude and longitude of observed objects. This was roughly the smallest division that retained a 

few tens of hits per region and hence could provide meaningful statistics. The GSS values (Fig. 

9) show that the ARW4 model had somewhat higher scores in the western part of the domain, 

whereas the NMM4 model had higher scores in the eastern part of the domain. 

The fact that both models performed similarly according to the object-based GSS, but not 

for the MMI metric (Table 2) may be reconciled in two ways. The first way involves hedging 

the GSS by overforecasting the number of objects. We can represent the effect of 

overforecasting the number of objects by considering every forecast object to be two adjacent 

objects that occupy exactly the same grid squares as the original object. For convenience, if we 

further assume that the number of hits, misses and false alarms are all equal (which is not far 

from the real situation), and further that ε represents 10% of the hits, it turns out that the GSS for 

the model that overforecasts the number of objects (by a factor of 2) will be greater by a factor of 
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1.16 (0.31 vs. 0.36). Thus it is possible that the NMM4 was gaining some advantage by 

overforecasting the number of objects. Despite these drawbacks to using an object-based GSS, it 

may still have a useful application as an object-based verification metric that has a clear analogy 

with a traditional verification metric.

Another interpretation is that while total interest penalizes extreme outlier forecast 

objects more than “near false alarms”, the GSS for object matching does not distinguish these. 

In other words, if we adopt a threshold for matching, as long as the maximum interest value 

among all object pairs containing a given forecast object remains less than this threshold, the 

GSS is insensitive to variations in the closeness of a match. Based on examples such as 4 June 

(Fig. 6), it could be that there are more outliers in the NMM4 model such that the interest 

distribution suffers more than the GSS. We view such penalization as a desirable outcome of 

using MMI (as MMIF or MMIO) as a metric of forecast quality. 

4. Conclusions

We have used the Method for Object-based Diagnostic Evaluation (MODE) to compare 

forecasts made from the ARW and NMM models during the 2005 NSSL/SPC Spring Program. 

Both models were run without a traditional cumulus parameterization scheme on horizontal grid 

lengths of 4 km (ARW) and 4.5 km (NMM). MODE was used to evaluate 1-h rainfall 

accumulation from 24-h forecasts valid at 00 UTC on 32 days during the period from 23 April to 

4 June, 2005. A nine-case subset was also evaluated in more detail. 

The primary variable used for evaluation was a “total interest” derived from a fuzzy-logic 

algorithm that compared several attributes of forecast and observed rain features. Total interest 
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comprised such factors as the separation of the object centroids, minimum edge separation, 

orientation angle relative to the grid axis, the ratio of areas of the two objects, and the fraction of 

area common to both objects. Total interest was defined for each pair of forecast and observed 

objects identified at a particular time. A matrix (called the “interest matrix”) was constructed in 

which the rows were forecast objects, columns were observed objects and the matrix elements 

were total interest values. The maximum value of total interest values along a row defined the 

best match for a given forecast object while the maximum interest down a column represented 

the best match for a given observed object. The median of the distribution of maximum interest 

values for forecast or observed objects (denoted MMIF or MMIO, respectively) defined a metric 

of forecast quality. This metric could be aggregated over a single forecast or any collection of 

forecasts to obtain a summary measure. 

Results from the 32-cases suggest that, overall, the ARW4 model performed better than 

the NMM4 model based on the MMIF metric, whereas models performed nearly identically 

based on the MMIO metric. We demonstrated statistical significance of the results for the MMIF 

metric using a Wilcoxon rank sum test. The primary reason for poorer performance of the 

NMM4 model was the larger number of forecast rain areas with no observed counterpart (false 

alarms). Broadly similar conclusions regarding model performance were obtained by Marzban et 

al. (2008) and Marzban and Sandgathe (2009) using completely different verification methods.

However, it was noted that the performance varied considerably from day to day with 

most days featuring indistinguishable performance, and a small number of poor NMM4 forecasts 

likely producing the overall result. In particular, 00 UTC 13 May and 00 UTC 4 June were two 

times that revealed significant convective activity and an excessive number and size of rain areas 

in the NMM4. 
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We also compared the regional quality of forecasts by examining a Gilbert Skill Score for 

object matching. In the construct of a 2x2 contingency table, matches were considered hits, 

objects forecast but not matched were false alarms and objects observed but having no forecast 

counterpart were misses. We used the climatological fractional area covered by observed objects 

(5%) to estimate the number of hits due to chance. We found that the ARW4 performed 

somewhat better in the western part of the domain (the High Plains) and the NMM4 was better 

over the Ohio Valley and southeast. Both models achieved GSS values near 0.42 overall. This 

result conflicted somewhat with the results based on total interest. However, the bias of the 

NMM4 model to forecast too many objects was found to artificially inflate the GSS and could 

have offset the somewhat lower forecast quality of that model relative to the ARW4 that was 

inferred from the maximum interest metric.

There are many possibilities for further study. One is a deeper investigation into the 

causes of the NMM overforecast of the number and extent of rain areas. The study by 

Skamarock (2004) suggests that excessive near-grid-scale variability can occur if numerical 

dissipation is not properly tuned. Skamarock and Dempsey (2005) showed that the NMM, as 

configured during the Developmental Testbed Center Winter Forecasting Experiment (see 

Bernardet et al. 2008 for configuration details), produced too much near-grid-scale energy in the 

lower troposphere. We speculate that given moist, unstable thermodynamic conditions, this 

energy could lead to excessive small-scale convection. Once initiated, this convection could 

then grow upscale. Alternatively, many nearby small-scale convective features could be grouped 

together as a large area by MODE. Either way, this could result in the occasionally poor NMM 

forecasts we noted, and could contribute to the overall biases in rain object area and intensity we 

have reported.
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While the fuzzy-logic approach to matching behaves sensibly in most cases and is 

tunable by the user, it may be desirable to have a matching algorithm that is less empirical, with 

fewer parameters. Gilleland et al. (2008) demonstrated a computationally efficient 

implementation of the Baddeley delta image metric (Baddeley 1992) which encompasses a 

comparison of many object attributes into a generalized distance metric. This metric could 

augment or replace the fuzzy-logic method for estimating the quality of a match between object 

pairs. 

Another avenue of further research is introducing dynamical variables into MODE so that 

the covariance of precipitation features with other aspects of the flow could be considered (a) to 

more intelligently perform matching; (b) to better link results back to model dynamics in order to 

understand precipitation errors. For instance, one would be better able to categorize objects 

phenomenologically based on conditions near rain areas such as vertical wind shear and 

convective available potential energy. One could also make more intelligent choices about 

matching and merging rain areas given dynamical information such as the presence of frontal 

boundaries, or physiographic information such as the presence of mountains or coastlines. The 

aim of these methodological augmentations is to more closely mimic the reasoning process an 

expert would use in assessing the quality of correspondence between forecast and observed 

features. 
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Appendix A: Interest Maps

The attributes whose interest functions are nonzero are: (a) centroid distance separation; 

(b) minimum separation distance of object boundaries; (c) orientation angle difference; (d) area 

ratio and (e) intersection area.  These attributes are weighted by (a) 24%; (b) 35%; (c) 12%; (d) 

17%; and (e) 12%, respectively in the computation of total interest.  These are subjective choices 

based on empiricism. The minimum boundary separation was assigned the largest value because 

it was felt that this was the most robust factor describing forecast quality. Proximity of forecast 

and observed objects is represented by the centroid displacement, boundary displacement and 

intersection area. Collectively these account for nearly 70% of the total interest and treat objects 

having a wide variety of shapes and sizes. The other parameters (angle difference and area ratio) 

were deemed slightly less indicative of forecast quality, but still important enough to include.

Figure A.1 shows the interest functions for each attribute. Only the absolute value of the 

orientation angle difference is considered. Note that this attribute is restricted to values of 90º or 

less. The area ratio is defined to fall between zero and unity. Therefore this function does not 

distinguish whether the forecast or observed object is larger. 

Confidence functions, which multiply the interest derived from a particular attribute, are 

less than unity if a particular attribute becomes overly sensitive to small changes in the data or 

otherwise fails to provide useful information about the forecast error in certain situations. For 

instance, if the aspect ratio of an object is nearly unity, orientation angle becomes too sensitive to 

small changes in the shape of the object.  We may then obtain large differences in orientation 

between forecast and observed objects for subtle changes in either shape. Hence the confidence 

that we can meaningfully assign an error in orientation angle approaches zero as aspect ratio of 
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either object approaches unity.  The confidence function is expressed in terms of aspect ratio (r) 

as;

( )
0.32

2

1
. 

1
r

c
r

 −
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A.1

From (A.1), it can be seen that the confidence is symmetric about an aspect ratio of unity. To 

derive the confidence for a pair of objects (forecast and observed), we compute the square root of 

the product of the confidence values obtained for each object separately. When this confidence 

value is nearly zero, we effectively remove the angle difference contribution to the total interest.

The other non-trivial confidence function pertains to the distance separation of the two 

centroids of an object pair. If the two objects have a greatly different area (i.e. a small area ratio), 

centroid separation is a less meaningful measure of forecast error than if the forecast and 

observed objects have a similar size. We define the confidence for centroid separation to be 

equal to the area ratio so that when the area ratio is zero, the centroid separation is not considered 

in the computation of total interest.
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Appendix B: Dates examined

The following is the list of dates examined, for which forecasts from both the NMM4 and 

ARW4 models were available. The time evaluated was 00 UTC in all cases, representing the 1-

hour accumulation of rain from a forecast initialized 24 h prior to the time shown. Dates 

highlighted in the 9-case sample appear in bold, underlined text.

1. 23 April
2. 26 April
3. 27 April
4. 29 April
5. 30 April
6. 1 May
7. 3 May
8. 5 May
9. 6 May
10. 7 May
11. 8 May
12. 9 May
13. 10 May
14. 11 May
15. 13 May
16. 14 May
17. 15 May
18. 18 May
19. 19 May
20. 20 May
21. 21 May
22. 24 May
23. 25 May
24. 26 May
25. 27 May
26. 28 May
27. 29 May
28. 30 May
29. 1 June
30. 2 June
31. 3 June
32. 4 June
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Figure Captions

Figure 1.  Schematic showing hypothetical forecast rain objects (black numerical labels) and 

observed rain objects (white numerical labels) with the corresponding interest matrix at 

right.  Orange-shaded objects are matched whereas blue shading denotes no match.   

Hypothetical total interest values greater than 0.7 are shown in red numbers in matrix. 

Figure 2.  Results of MODE applied to idealized rain areas that are elliptical with two intensity 

values.  The total interest and equitable threat score (GSS) are annotated on each 

example.  Results were calculated on a grid increment of 4 km.  Parameters for the 

interest computations are described in the text and are the same as used for numerical 

forecasts.  No thresholding was applied in these idealized cases. 

Figure 3. One-hour rainfall accumulation from 24-h forecast valid 00 UTC 1 June from (a) 

NMM4 and (c) ARW4, with the Stage II observations in (b).  MODE objects are colored 

in panels (d)-(g) with R=5, T=3 mm.  Like colors in (d) and (e) indicate matching objects 

(dark blue indicates no match).  The same is true for like colors in (f) and (g).  Bounding 

convex hulls (black lines) delineate object clusters, but are not used for computations. 

Figure 4. Plots of the median value of maximum interest (MMI) as a function of convolution 

radius (grid squares) and threshold (mm) for the 24-h forecast of 1-h rainfall 

accumulation valid 00 UTC 1 June, 2005.

Figure 5. Bar graph showing values of MMI computed separately for each of the nine cases from 

the 2005 NSSL/SPC Spring Program dataset highlighted in A09. Black bars indicate the 
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NMM4 model and gray bars indicate the ARW4 model.  Dates are indicated as MM/DD, 

where MM=month and DD=day. 

Figure 6. Results of MODE for 00 UTC May 13, 2005.  Fields are based on a 1-h accumulated 

from a 24-h forecast.  Format follows Fig. 3 panels (d)-(g). 

Figure 7.  As in Fig. 6, but for 00 UTC June 4, 2005. 

Figure 8. (a) NMM4 24-h forecast valid 00 UTC 18 May; (b) Stage II analysis valid 00 UTC 18 

May; and (c) rain areas derived from the NMM4 at 00 UTC 18 May (colors) and rain 

areas derived from Stage II analysis at 00 UTC 18 May (blue outlines). Red color-fill 

indicates matching between NMM4 and Stage II areas. Navy shading indicates no match 

of forecast object.

Figure 9. Regional dependence of equitable threat scores defined based on numbers of objects 

matching, false alarms and misses.  Results are valid for 32 cases.  Regions are: 

NW=northwest; W=west; SW=southwest; NC=north-central; C=central; SC=south 

central; NE=northeast; E=east; SE=southeast.  Regions were defined based on tertiles of 

the distributions of longitude and latitude, respectively, of observed object centroids. 

Figure A.1. Interest functions for (a) centroid separation (solid, gray) and minimum boundary 

separation (dashed), both in km; (b) angle difference (degrees); and (c) area ratio (solid, 

gray) and area intersection ratio (dashed).
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Figure 1. Schematic showing hypothetical forecast rain objects (black numerical 
labels) and observed rain objects (white numerical labels) with the corresponding 
interest matrix at right.  Orange-shaded objects are matched whereas blue 
shading denotes no match.   Total interest values greater than 0.7 are shown in 
red numbers in matrix. 
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Figure 2.  Results of MODE applied to idealized rain areas that are elliptical with 
two intensity values.  The total interest and equitable threat score (GSS) are 
annotated on each example.  Results were calculated on a grid increment of 4 km.  
Parameters for the interest computations are described in the text and are the 
same as used for numerical forecasts.  No thresholding was applied in these 
idealized cases. 
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Figure 3. One-hour rainfall 
accumulation from 24-h 
forecast valid 00 UTC 1
June from (a) NMM4 and 
(c) ARW4, with the Stage II
observations in (b).  MODE 
objects are colored in panels 
(d)-(g) with R=5, T=3 mm.  
Like colors in (d) and (e) 
indicate matching objects 
(dark blue indicates no 
match).  The same is true for 
like colors in (f) and (g).  
Bounding convex hulls 
(black lines) delineate object 
clusters, but are not used for 
computations. 
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Figure 4. Plots of the median value of maximum interest (MMI) as a 
function of convolution radius (grid squares) and threshold (mm) for the 
24-h forecast of 1-h rainfall accumulation valid 00 UTC 1 June, 2005.
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Figure 5. Bar graph showing values of MMI computed separately for each of the 
nine cases from the 2005 NSSL/SPC Spring Program dataset highlighted in A09.
Black bars indicate the NMM4 model and gray bars indicate the ARW4 model.  
Dates are indicated as MM/DD, where MM=month and DD=day. 



40

Figure 6. Results of MODE for 00 UTC May 13, 2005.  Fields are based on a 1-h 
accumulated from a 24-h forecast.  Format follows Fig. 3 panels (d)-(g). 
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Figure 7.  As in Fig. 6, but for 00 UTC June 4, 2005. 
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Figure 8. (a) NMM4 24-h forecast valid 00 
UTC 18 May; (b) Stage II analysis valid 
00 UTC 18 May; and (c) rain areas derived 
from the NMM4 at 00 UTC 18 May 
(colors) and rain areas derived from Stage 
II analysis at 00 UTC 18 May (blue 
outlines). Red color-fill indicates matching 
between NMM4 and Stage II areas. Navy 
shading indicates no match of forecast 
object.
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Figure 9. Regional dependence of equitable threat scores defined based on 
numbers of objects matching, false alarms and misses.  Results are valid for 32 
cases.  Regions are: NW=northwest; W=west; SW=southwest; NC=north-central; 
C=central; SC=south central; NE=northeast; E=east; SE=southeast.  Regions 
were defined based on tertiles of the distributions of longitude and latitude, 
respectively, of observed object centroids. 
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Figure A.1. Interest functions for (a) centroid separation (solid, gray) and 
minimum boundary separation (dashed), both in km; (b) angle difference 
(degrees); and (c) area ratio (solid, gray) and area intersection ratio (dashed).
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WRF-NMM4 WRF-ARW4

Grid spacing 4.5 km 4.0 km

Vertical levels 35 35

Planetary Boundary 
Layer scheme

MYJ YSU

Microphysics Ferrier WSM6

Initial conditions NAM NAM

Table 1. Configuration of numerical models. NAM=North American 
Model of NCEP, MYJ=Mellor-Yamada-Janjic (Janjic 2002), 
YSU=Yonsei University (Noh et al. 2003). WSM6 (WRF Single-
Moment scheme 6) derives from Hong et al. 2004) and Ferrier from 
Ferrier et al. (2005).
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R=10 0.63/0.70 
(292)

0.67/0.68 
(173)

0.59/0.62 
(95) R=10 0.58/0.73 

(459)
0.55/0.69 

(315)
0.52/0.63 

(155)

R=5 0.66/0.70 
(690)

0.65/0.68 
(435)

0.66/0.67 
(263) R=5 0.62/0.73 

(1027)
0.60/0.72 

(752)
0.56/0.68 

(414)

T=1. 5 T=3 T=6 T=1. 5 T=3 T=6

ARW4 NMM4

Table 2. Median of Maximum Interest based on forecast (MMIF) and observed objects
(MMIO), displayed as MMIF/MMIO, for different combinations of R and T. The 
number of forecast objects appears in italics. 

R=10 1.3 (3.4) 1.4 (1.5) 1.9 (0.4) R=10 2.1 (3.4) 2.3 (1.5) 3.1 (0.4)

R=5 1.3 (3.4) 1.4 (1.7) 1.7 (0.6) R=5 2.1 (3.4) 2.3 (1.7) 2.9 (0 6)

T=1. 5 T=3 T=6 T=1. 5 T=3 T=6

ARW4 NMM4

Table 3. Area Bias (total area of forecast objects divided by total area of observed 
objects). The total observed area in 106 km2 appears in italics.

R=10 0.83 0.73 0.58 R=10 0.79 0.65 0.44

R=5 0.81 0.78 0.70 R=5 0.78 0.77 0.63

T=1.5 T=3 T=6 T=1. 5 T=3 T=6

ARW4 NMM4

Table 4. Total area of matched objects (forecast + observed) divided by total area of all 
objects (forecast + observed)


