
April 7, 2006 1:45 pm MDT Page 1 of 4

Moments, Centroids and Axis Angles

R. Bullock

This writeup concerns the calculation of moments, centroids and axes for objects defined either as

a collection of grid squares, or as closed polylines. Actually, only the calculation of moments differs for

the two cases—once the moments are in hand, calculation of centroids and axes proceeds in the same

way for both situations.

Moments for Objects defined as Unions of Grid Squares

Suppose we have a twodimensional grid G =
{

(x, y) ∈ Z
2 | 0 ≤ x < Nx, 0 ≤ y < Ny

}

and a

region of interest (object) B ⊂ G. We can define a function f : G → {0, 1} ⊂ R by

f(x, y) =

{

1 if (x, y) ∈ B

0 if (x, y) 6∈ B

(Note: statisticians would call f the “indicator function” of B, while mathematicians would call f the

“characteristic function” of B.) We can then define moments of B by summing certain functions over

the grid.

First the area of the object. This will be expressed simply as a count of the number of grid squares

occupied by the object, and can be thought of as a kind of “zeroth moment” of the object.

A =
∑

x,y

f(x, y)

There are two first moments, one in x and one in y, denoted respectively by Sx and Sy, defined by

Sx =
∑

x,y

x f(x, y) and Sy =
∑

x,y

y f(x, y)

There are four 2nd moments (although only three are in general distinct) defined by

Sxx =
∑

x,y

x2 f(x, y) Sxy = Syx =
∑

x,y

xy f(x, y) Syy =
∑

x,y

y2 f(x, y)

We will not investigate moments higher than the 2nd in this writeup.

Moments for Objects defined by Closed Polylines

Now we consider our object B to be the region inside a closed polyline (or perhaps the union of several

such). Surprisingly, the situation here (at least from a computational point of view) is really no more

complicated than it was for objects on a grid. Deriving the requisite formulas is more involved, but

the actual computations really only involve looping around the vertices of the polyline and performing

some simple arithmetic on the x and y coordinates of the vertices.

Let’s start, as before, by looking at area. The area form on the plane R
2

is Ω = dx ∧ dy . We can

use Stokes’ Theorem to turn the integral of Ω over B into an integral around the enclosing polyline of

another form α such that dα = Ω. Of course, we need to know that Stokes’ Theorem holds for regions

whose boundaries are only piecewise smooth, but fortunately it does.

There are many choices for α. We will use α = (1/ 2) (xdy − y dx) . It is now necessary to integrate

this form around the closed polyline bounding our object. We do this by integrating α over each of the

edges of the polyline, and then summing the results.

April 7, 2006 1:45 pm MDT Page 2 of 4

Let’s say the polyline has n vertices (xi, yi) with i ∈ Z/nZ. If we consider edge #i as being the straight

line segment running from (xi, yi) to (xi+1, yi+1), we can then parametrize this segment as follows:

{ (1 − t) (xi, yi) + t (xi+1, yi+1) | 0 ≤ t ≤ 1 }

Using this parametrization we can pull α back to a form involving t, which (after some cancellation)

simplifies down to (1/2) (xi yi+1 − yi xi+1) dt . Finally, we integrate this over 0 ≤ t ≤ 1 to get

(1/2) (xi yi+1 − yi xi+1) . The area of the object is now gotten by summing over the edges:

A =
1

2

∑

i

(xi yi+1 − yi xi+1)

A few points to note here: first, our integral over the bounding polyline is an oriented integral. If the

direction (clockwise vs. counterclockwise) in which the polyline is traversed is changed, the integral

will change sign. Therefore to get the true geometrical area we should take absolute values after the

summation. Second, the summation index i takes values in Z/nZ rather than Z. Thus if i = n − 1,

then i + 1 is to be interpreted as 0, not n.

We can do similar things for higher moments. We will simply present the results here, rather than

plodding through each derivation separately. In the table below, we indicate the form β which would be

integrated over the object to define the moment, the form α, chosen so that dα = β, integrated around

the bounding polyline (Stokes’ Theorem again), and the ith term in the resulting summation.

β α Summation Term

dx ∧ dy
(xdy − y dx)

2

(xi yi+1 − yi xi+1)

2

xdx ∧ dy
x2 dy

2

(

x2
i + xi xi+1 + x2

i+1

)

(yi+1 − yi)

6

y dx ∧ dy −
y2 dx

2

(xi − xi+1)
(

y2
i + yi yi+1 + y2

i+1

)

6

x2 dx ∧ dy
x3 dy

3

(

x3
i + x2

i xi+1 + xi x2
i+1 + x3

i+1

)

(yi+1 − yi)

12

y2 dx ∧ dy −
y3 dx

3

(xi − xi+1)
(

y3
i + y2

i yi+1 + yi y2
i+1 + y3

i+1

)

12

xy dx ∧ dy
xy (xdy − y dx)

4

(xi yi+1 − yi xi+1) (2 xi yi + xi+1 yi + xi yi+1 + 2 xi+1 yi+1)

24

Looking at this table, the reader can easily see why we are not considering moments higher than the

2nd in this writeup . . . there would hardly be room to write them down.

Now that we know how to calculate moments for both classes of objects—those that are given on a

grid and those given as polyline boundaries, it’s worthwhile to consider moments more generally. Up

until now, we have been working with moments about the origin. What about moments about another

point? And what if our object moves or rotates? Do we have to calculate the moments all over again

from scratch? It would be nice if there were some way to calculates new moments from old. This can

be done provided we restrict ourselves a simple enough class of coordinate transformations. In this

writeup we will work with affine transformations.

April 7, 2006 1:45 pm MDT Page 3 of 4

Transformation of Moments

Suppose we have a coordinate transformation (x, y) 7→ (u, v) defined by

[

u

v

]

=

[

m11 m12

m21 m22

][

x

y

]

+

[

bx

by

]

where the m’s and b’s are given constants. This is called an affine coordinate transformation. Trans

lations, rotations, reflections, scaling and shear are all special cases of this general form. How are the

u, v moments related to the x, y moments? Let φ denote the transformation, so that φ(x, y) = (u, v). It

all really boils down to examining pullbacks under φ.

Let M = [mij] be the 2 × 2 coefficient matrix above, and let ∆ = det M . Then we have, e.g.,

φ∗ (du ∧ dv) = (m11 dx + m12 dy) ∧ (m21 dx + m22 dy)

= (m11 m22 − m21 m12) dx ∧ dy

= ∆ dx ∧ dy

If we let A′ be the (signed) area of the image object φ(B), then we have from the change of variables

formula for integrals that

A′ =

∫

φ(B)

du ∧ dv =

∫

B

φ∗ (du ∧ dv) = ∆

∫

B

dx ∧ dy = ∆ A

What about first moments? We have φ∗ (u du ∧ dv) = (m11 x + m12 y + bx) ∆ dx ∧ dy, and so integrat

ing as above we get Su = ∆ (m11 Sx + m12 Sy + bx A). Similarly, Sv = ∆ (m21 Sx + m22 Sy + by A).

Second moments are messier. We have φ∗ (u2 du ∧ dv) = (m11 x + m12 y + bx)
2

∆ dx ∧ dy, from which

Suu = ∆
(

m2
11 Sxx + m2

12 Syy + b2
x A + 2 m11 m12 Sxy + 2 m11 bx Sx + 2 m12 bx Sy

)

Similarly,

Svv = ∆
(

m2
21 Sxx + m2

22 Syy + b2
y A + 2 m21 m22 Sxy + 2 m21 by Sx + 2 m22 by Sy

)

and

Suv = ∆ (m11 m21 Sxx + m12 m22 Syy + (m11 m22 + m12 m21) Sxy

+ (m21 bx + m11 by) Sx + (m22 bx + m12 by) Sy + bx by A)

Note that for many special transformations, like translations and rotations, ∆ = 1.

Centroid and Axis

It is possible to translate coordinates so that Su = Sv = 0. When this condition holds, the origin of

the coordinate system is at the centroid of the object. To find the coordinates (x, y) of the centroid, we

transform by

M =

[

1 0
0 1

]

and

[

bx

by

]

= −

[

x
y

]

April 7, 2006 1:45 pm MDT Page 4 of 4

Then ∆ = 1 and we have Su = Sx − xA and Sv = Sy − y A. The condition that Su and Sv both be

zero now gives

(x, y) =

(

Sx

A
,
Sy

A

)

Now let’s consider the axis. To do this, we will suppose that the origin our coordinate system is at

the object’s centroid. This means that Sx = Sy = 0. We’ll also confine ourselves to rotations of the

coordinate system, so that M =

[

cos θ sin θ
− sin θ cos θ

]

for some angle θ, and bx = by = 0. Then ∆ = 1

and the transformation laws for 2nd moments become

Suu = cos2 θ Sxx + sin2 θ Syy + 2 cos θ sin θ Sxy

Svv = sin2 θ Sxx + cos2 θ Syy − 2 cos θ sin θ Sxy

Suv = − cos θ sin θ Sxx + cos θ sin θ Syy +
(

cos2 θ − sin2 θ
)

Sxy

The urge to jump right in with trig identities and simplify this is strong, but we will resist for the

moment, for a better simplification is available. Let σ0 = Suu + Svv, and ρ0 = Sxx + Syy. Further,

let σ1 = (Suu − Svv) /2 , ρ1 = (Sxx − Syy) /2 and σ2 = Suv , ρ2 = Sxy . Rewriting the above trans

formation laws in terms of the σ’s and ρ’s (and now using trig identities) we get a great improvement:

σ0 = ρ0

[

σ1

σ2

]

=

[

cos 2θ sin 2θ

− sin 2θ cos 2θ

] [

ρ1

ρ2

]

We’ll define the object axis by requiring that Suu (considered as a function of θ) be maximized. Taking

the above expression for Suu and differentiating, we have, as the reader can verify, S′

uu = 2 σ2, and

S′′

uu = −4 σ1. By elementary calculus, for Suu to be a maximum we must have S′

uu = 0 and S′′

uu < 0.

We therefore determine the axis angle θ by two conditions—first, that σ2 be zero, and second, that σ1

be positive.

The above matrix equation is easy to invert:

[

ρ1

ρ2

]

=

[

cos 2θ − sin 2θ

sin 2θ cos 2θ

][

σ1

σ2

]

and upon setting σ2 = 0 we have that ρ1 = σ1 cos 2θ and ρ2 = σ1 sin 2θ. It’s tempting to simply

conclude that tan 2θ = ρ2/ρ1, but what about the quadrant of θ ? Since σ1 > 0, we can write

θ =
1

2
arg (ρ1 + ρ2 i)

Many programming languages have a 2argument arctangent function, usually called atan2. The

expression atan2(y,x) resolves the quadrant of the point (x, y) correctly (though the fact that the

order of x and y is reversed in the argument list is a continual nuisance). Thus we finally have

θ = 0.5*atan2(ρ2,ρ1)

and this is our axis angle.

