
December 30, 2005 3:22 pm MST Page 1 of 7

Config File Language Documentation

R. Bullock

The language used for configuration files is a very stripped­down version of C, with a few extensions.

A config file is a sequence of statements. A statement may be either an assignment of a value to a

variable, or a function or array definition. All statements end with a semicolon.

Comments

Either C or C++ style comments may be used. Unlike in the C language, C­style comments may be

nested.

Scalars

Scalars (numbers) come in two types: integer and floating­point. The syntax for integers is as follows:

digit : [0-9]

digits : {digit}+

integer : -?{digits}

That is, an integer is an optional minus sign followed by one or more digits. Integers are represented

internally as signed 32­bit integer data types. Examples of valid integer constants are

0 1000 -98234

Floating­point numbers are represented internally as double precision data types. The syntax for a

floating­point number is

exp : (e|E)(-?){digits}

opt exp : {exp}?

floating point : -?{digits}{exp}

| -?"."{digits}{opt exp}

| -?{digits}"."{opt exp}

| -?{digits}"."{digits}{opt exp}

Examples of valid floating­point constants are

1. .002 3.14159 -.45 0.0

1e5 2E-3 .12e30 -1.e10 -1.234e-56

Floating­point constants must have either a decimal point or an exponent (or both) to distinguish them

from integers. Note that one can use either a capital or a lower­case “e” in scientific notation.

Identifiers

Identifiers are used as variable, function, or array names. The syntax for identifiers is as follows:

letter : [A-Z] | [a-z] |

identifier : letter (letter | digit)*

Roughly, an identifier is a letter followed by zero or more letters or digits. The underscore character “ ”

is considered to be a letter. Examples of valid identifiers are

x XYZ gammaprime z50

December 30, 2005 3:22 pm MST Page 2 of 7

Expressions

This is where it gets complicated. Basically expressions are formed from numbers, identifiers, function

evaluations, and array elements, and other expressions by applying the basic arithmetic operators.

Examples of valid expressions are

5 -x 3*y + z f(x + 7.2) a[5] + 9

abc(x, 7) xˆ3 f(g(y)) 1/(x + 1) x - zp

It’s important to remember the difference between integer and floating­point arithmetic when writing

expressions. As an example, 3.0/4.0 evaluates to 0.75 , but 3/4 evaluates to zero. Generally, if a

binary arithmetic operator is given two integers as operands then integer arithmetic will be used, but

if one or both operands are floating­point, then floating­point arithmetic is used.

An exception to this is the exponentiation operator “ˆ ”. Floating­point arithmetic is always used for

exponentiation, with the single exception that aˆ2 is an integer if a is an integer.

Assignments

An assignment statement simply assigns a value to an identifier. The syntax is

identifier = expression ;

Examples of valid assignments are

x = 5;

voltage = sin(omega*t + phi);

grid spacing = 22.0; // km

value 50 = foo*bar;

All identifiers on the right hand side (RHS) of an assignment must have been previously defined.

Character strings are also allowed in assignments:

data path = "/home/user/algorithm output";

This is the only context in the language where character strings are allowed.

Functions

Functions can have up to ten arguments, and return scalar values. Examples of function definitions

are

f(x) = 5*x + 4;

scale(horizontal, vertical) = f(horizontal)/f(vertical + 17);

d scale(x, y, z, t) = scale(x, y)*scale(z, t);

Arguments to functions are dummy variables, local to the function. For example, the x in the definitions

above has nothing to do with any identifier named x that may have been previously defined in the config

file.

Not all arguments need be used in the expression for a function. The following definition is perfectly

legal:

MYfunc(x1, x2, x3, x4) = 5;

As with assignments, nothing (except for dummy arguments) can appear on the RHS that hasn’t been

previously defined.

December 30, 2005 3:22 pm MST Page 3 of 7

Piecewise­Linear Functions

A piecewise­linear function is a function whose graph consists of straight line segments.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

A function like this is specified by listing the corner points on it’s graph, like so:

pwl func = {

(0.0, 2.0)

(1.0, 3.0)

(3.0, 3.0)

(4.0, 5.0)

(6.0, 5.0)

(8.0, 1.0)

};

Once defined, the function can be used in assignments with the usual function­call syntax:

y val = pwl func(xˆ2 + 0.59);

Piecewise­linear functions of more that one variable are not yet implemented. I know how to do it, but

haven’t gotten around to it yet.

Piecewise­linear functions are constant outside their implied domain. In the above example, for

instance, pwl func(x) will evaluate to 2 if x is less than zero, and to one if x is greater than 8.

The x and y coordinates of points can be expressions. Notice also that the list of points is not separated

by commas.

Built­In Functions

Many commonly used functions are built into the language, as a convenience to the user, and because

many of them would be difficult or impossible for the user to define within the language.

December 30, 2005 3:22 pm MST Page 4 of 7

sin, cos, tan

These are the usual trigonometric functions. They take one floating­point argument (in radians) and

return a floating­point value.

asin, acos, atan

Inverse trigonometric functions. They take one floating­point argument and return a floating­point

value (in radians).

sind, cosd, tand

These are the same as sin , cos , tan except the argument is in degrees.

asind, acosd, atand

These are the same as asin , acos , atan except the return value is in degrees.

log, exp

The natural logarithm and its inverse.

log10, exp10

Logarithm base 10 and its inverse. The expression exp10(x) is equivalent to 10ˆx .

sqrt

Square root. The expression sqrt(x) is equivalent to xˆ0.5 .

abs

Absolute value. If given an integer argument, an integer is returned. Otherwise the return value is

floating­point.

floor, ceil

These are the same as the corresponding functions in the C math library. floor rounds a floating

point argument down to an integer, while ceil rounds up. Return value is floating­point.

nint

Nearest integer function. It takes one floating­point argument and returns an integer value.

sign

Signum function. It returns an integer value of ­1 if the argument is negative, +1 if the argument is

positive, and 0 if the argument is zero.

December 30, 2005 3:22 pm MST Page 5 of 7

step

Step function. It returns an integer value of 0 if the argument is negative, 1 otherwise.

atan2

Two­argument arctangent function. This works the same way as the one in the C math library. The

expression atan2(y, x) gives the polar­coordinate angle of the point (x, y) in the correct quadrant.

Note the reversal of the order of x and y in the argument list. Return value is in radians, in the range

−π to π.

atan2d

Same as atan2 except return value is in degrees.

arg

A variation on the two­argument arctangent function that takes x as its first argument rather than y .

The expression arg(x, y) is equivalent to atan2(y, x) . Return value is in radians.

argd

Same as arg except return value is in degrees.

min, max

Minimum and maximum functions. They take two arguments. If both arguments are integers, an

integer value is returned, otherwise a floating­point value is returned.

mod

Modulus function. Takes two arguments. If both arguments are integers, an integer value is returned,

otherwise a floating­point value is returned. Examples: mod(17, 5) evaluates to 2 and mod(17.3,

5) evaluates to 2.3 . Unlike the similar “ %” operator in C, the return value of mod is always non­

negative. The expression mod(a, 0) evaluates to a.

Arrays

Arrays of dimension up to 10 are supported. A 1­dimensional array can be defined as follows:

a[] = [5, 4, 3, 2, 1];

For arrays of higher dimension, the size in each dimension must be explicitly declared:

r values[2][3] = [

3, 4, 5,

6, 7, 8

];

As in C, the last index varies fastest.

December 30, 2005 3:22 pm MST Page 6 of 7

Once defined, array elemets can be used in expressions:

y = 5 + r values[0][1];

Elements of arrays can be expressions. Array indices can be expressions — if the value of the expression

is not an integer, it will be rounded to the nearest integer with nint . Array indices always start at

zero.

Examples & Tips

Here are some examples of the language in use.

Commonly used mathematical constants are easily obtained:

pi = 4*atan(1);

e = exp(1);

golden ratio = (1 + sqrt(5))/2;

Define whatever functions you need. For example, logarithm and exponential base 2 are not built in,

but are easy to define:

log2(x) = log(x)/log(2);

exp2(x) = 2ˆx;

Remember to keep in mind the distinction between integer and floating­point arithmetic. Consider the

following statements:

f(x) = x/10;

y = f(9.0);

z = f(9);

Then y will be a floating­point scalar with value 0.9 , but z will be an integer with value zero. If we

had written instead

f(x) = x/10.0;

then both y and z would be floating­point scalars with value 0.9 .

The exponentiation operator “ ˆ ” has highest precedence of all the binary arithmetic operators. Thus the

expression 2*3ˆ5 is interpreted as 2*(3ˆ5) , and 2ˆ3*5 is interpreted as (2ˆ3)*5 . Use parenthesis

whenever you’re not sure about operator precedence. Liberal use of parenthesis will not slow down the

evaluation of an expression. The two expressions (a + b)/c and (((a + b)))/((((c)))) have

exactly the same internal representation. Just make sure your parenthesis are balanced, please!

You can use expressions in piecewise­linear function definitions and in array definitions.

corner = 0.8;

g = {

(0.0, 0.0)
(corner, 1.0)
(1.0, 1.0)

};

a[] = [0.5, sin(x + y), atand(0.9)];

December 30, 2005 3:22 pm MST Page 7 of 7

You can also use expressions in array indices:

y = a[min(x, 2)];

You can define parameters that make things tunable. Suppose you have an interest map imap that is

a function of distance (in grid units) on a 40­km grid. To use this on a different grid you could say:

grid size km = 10.5; // size of this grid

scale factor = 40.0/grid size km;

imap new(dist) = imap(dist*scale factor);

