Least-Squares Circle Fit

R. Bullock

Given a finite set of points in \mathbb{R}^{2}, say $\left\{\left(x_{i}, y_{i}\right) \mid 0 \leq i<N\right\}$, we want to find the circle that "best" (in a least-squares sense) fits the points. Define

$$
\bar{x}=\frac{1}{N} \sum_{i} x_{i} \quad \text { and } \quad \bar{y}=\frac{1}{N} \sum_{i} y_{i}
$$

and let $u_{i}=x_{i}-\bar{x}, \quad v_{i}=y_{i}-\bar{y}$ for $0 \leq i<N$. We solve the problem first in (u, v) coordinates, and then transform back to (x, y).

Let the circle have center $\left(u_{c}, v_{c}\right)$ and radius R. We want to minimize $S=\sum_{i}\left(g\left(u_{i}, v_{i}\right)\right)^{2}$, where $g(u, v)=\left(u-u_{c}\right)^{2}+\left(v-v_{c}\right)^{2}-\alpha$, and where $\alpha=R^{2}$. To do that, we differentiate $S\left(\alpha, u_{c}, v_{c}\right)$.

$$
\begin{aligned}
\frac{\partial S}{\partial \alpha} & =2 \sum_{i} g\left(u_{i}, v_{i}\right) \frac{\partial g}{\partial \alpha}\left(u_{i}, v_{i}\right) \\
& =-2 \sum_{i} g\left(u_{i}, v_{i}\right)
\end{aligned}
$$

Thus $\partial S / \partial \alpha=0$ iff

$$
\sum_{i} g\left(u_{i}, v_{i}\right)=0
$$

Eq. 1

Continuing, we have

$$
\begin{aligned}
\frac{\partial S}{\partial u_{c}} & =2 \sum_{i} g\left(u_{i}, v_{i}\right) \frac{\partial g}{\partial u_{c}}\left(u_{i}, v_{i}\right) \\
& =2 \sum_{i} g\left(u_{i}, v_{i}\right) 2\left(u_{i}-u_{c}\right)(-1) \\
& =-4 \sum_{i}\left(u_{i}-u_{c}\right) g\left(u_{i}, v_{i}\right) \\
& =-4 \sum_{i} u_{i} g\left(u_{i}, v_{i}\right)+4 u_{c} \underbrace{\sum_{i} g\left(u_{i}, v_{i}\right)} \\
& =0 \text { by Eq. } \mathbf{1}
\end{aligned}
$$

Thus, in the presence of Eq. 1, $\partial S / \partial u_{c}=0$ holds iff

$$
\sum_{i} u_{i} g\left(u_{i}, v_{i}\right)=0
$$

Eq. 2

Similarly, requiring $\partial S / \partial v_{c}=0$ gives

$$
\sum_{i} v_{i} g\left(u_{i}, v_{i}\right)=0
$$

Eq. 3

$$
\sum_{i} u_{i}\left[u_{i}^{2}-2 u_{i} u_{c}+u_{c}^{2}+v_{i}^{2}-2 v_{i} v_{c}+v_{c}^{2}-\alpha\right]=0
$$

Defining $S_{u}=\sum_{i} u_{i}, S_{u u}=\sum_{i} u_{i}^{2}$, etc., we can rewrite this as

$$
S_{u u u}-2 u_{c} S_{u u}+u_{c}^{2} S_{u}+S_{u v v}-2 v_{c} S_{u v}+v_{c}^{2} S_{u}-\alpha S_{u}=0
$$

Since $S_{u}=0$, this simplifies to

$$
u_{c} S_{u u}+v_{c} S_{u v}=\frac{1}{2}\left(S_{u u u}+S_{u v v}\right)
$$

Eq. 4

In a similar fashion, expanding Eq. 3 and using $S_{v}=0$ gives

$$
u_{c} S_{u v}+v_{c} S_{v v}=\frac{1}{2}\left(S_{v v v}+S_{v u u}\right)
$$

Eq. 5

Solving Eq. 4 and Eq. 5 simultaneously gives $\left(u_{c}, v_{c}\right)$. Then the center $\left(x_{c}, y_{c}\right)$ of the circle in the original coordinate system is $\left(x_{c}, y_{c}\right)=\left(u_{c}, v_{c}\right)+(\bar{x}, \bar{y})$.

To find the radius R, expand Eq. 1:

$$
\sum_{i}\left[u_{i}^{2}-2 u_{i} u_{c}+u_{c}^{2}+v_{i}^{2}-2 v_{i} v_{c}+v_{c}^{2}-\alpha\right]=0
$$

Using $S_{u}=S_{v}=0$ again, we get

$$
N\left(u_{c}^{2}+v_{c}^{2}-\alpha\right)+S_{u u}+S_{v v}=0
$$

Thus

$$
\alpha=u_{c}^{2}+v_{c}^{2}+\frac{S_{u u}+S_{v v}}{N}
$$

Eq. 6
and, of course, $R=\sqrt{\alpha}$.

See the next page for an example!

Example : Let's take a few points from the parabola $y=x^{2}$ and fit a circle to them. Here's a table giving the points used:

i	x_{i}	y_{i}	u_{i}	v_{i}
0	0.000	0.000	-1.500	-3.250
1	0.500	0.250	-1.000	-3.000
2	1.000	1.000	-0.500	-2.250
3	1.500	2.250	0.000	-1.000
4	2.000	4.000	0.500	0.750
5	2.500	6.250	1.000	3.000
6	3.000	9.000	1.500	5.750

Here we have $N=7, \bar{x}=1.5$, and $\bar{y}=3.25$. Also, $S_{u u}=7, S_{u v}=21, S_{v v}=68.25, S_{u u u}=0$, $S_{v v v}=143.81, S_{u v v}=31.5, S_{v u u}=5.25$. Thus (using Eq. 4 and Eq. 5) we have the following 2×2 linear system for $\left(u_{c}, v_{c}\right)$:

$$
\left[\begin{array}{cc}
7 & 21 \\
21 & 68.25
\end{array}\right]\left[\begin{array}{l}
u_{c} \\
v_{c}
\end{array}\right]=\left[\begin{array}{c}
15.75 \\
74.531
\end{array}\right]
$$

Solving this system gives $\left(u_{c}, v_{c}\right)=(-13.339,5.1964)$, and thus $\left(x_{c}, y_{c}\right)=(-11.839,8.4464)$. Substituting these values into Eq. 6 gives $\alpha=215.69$, and hence $R=14.686$. A plot of this example appears below.

