Contents:
1Summary

1Summary of user bulk download issues

2Summary of data providers’ issues

2Supporting Material

2Bulk Download use-case/requirements

3Commentary on bulk download

3Elaboration on the bulk download use case – repository revisions and versioning

4Commentary on repository revisions

5Other Issues

Summary
Summary of user bulk download issues:

1. PKI across all data nodes is still our number-1 issue and we are please this will be fixed by 1st September.

2. The listing services needs to be reliably and as fully up to data with the data as possible.

a. We need to be clear about which gateway to use or to know that all gateways are “accurate”.

b. As this may take some time, and we can work around this by going direct to the data, a clear timetable of delivery would help us decide how much effort to put into direct listing from the data nodes.

3. Our software that will maintain copies of a subset of the archive on site needs to be able to recognise version changes and to minimise what data is downloaded because of bandwidth constraints.

a. Although there are rules about what level of the data hierarchy versioning is applied, are you able to confirm that all data nodes do this consistently. We need this for automation.

b. Even so, we are still not clear how we would detect what data has been update and what specific files needs to be downloaded because the version numbering only works at the publication dataset level. A checksum could help here.
c. We are concerned that the current policy of allowing data nodes to have their own directory layout may result in problems around versioning. Has your testing confirmed that every data node behaves in the way you expect it to when data is revised? If not do you know when the expected behaviour will be implemented?

4. We are concerned about the risk of corrupted downloads and are aware of instances of this. The checksum seems important to us.

Summary of data providers’ issues:
1. The most important issue at the moment is the problem of auditing our data at the ESG to check that the data we have sent is resident at the data node and visible to end-users. The Gateway faceted search interface is too slow and has inappropriate outputs to do more than a sample check. At our end we can generate summaries of files sent by experiment and there should be a simple way for us to check that information against the system content and visibility status. This will not highlight problems with specific files, but will identify file groupings that need further investigation.

2. The implications of the QC checks that are or will be performed by ESG on the data and the actions that we may have to take based on the results of these checks is not at all clear to data providers. Are there documents which describe how this information will be collected, presented and the impact for data providers? Further clarity is required.

3. Support for redacting partial datasets is likely to be useful. At the moment redaction has to be performed on an entire "published" dataset (in effect a grouping of files by frequency and table). It is far more likely that individual variables will be found to have errors and we should be able to redact and republish individual variables.
4. We are starting to get questions from the IPCC authors regarding model setups etc. Much of this information is or will be available from the metadata entered into the questionnaire. The questionnaire interface was not designed to allow this type of user to gather information across multiple modelling groups. We understand that this information will be (partially) viewable from the Gateway interface when version 1.3.1 is deployed, and the metadata feeds are enabled. This needs to be done with some urgency. It would also be useful to provide each data provider with guidance on priorities on metadata descriptions so there is some consistency on information available as the system evolves (e.g. piControl, historical, rcp45 and rcp85 should be priority 1)
Supporting Material

What follows is more of a narrative which we hope gives the context needed behind the summary.
Many of our concerns have come out of us considering a version of the data replication problem: local centres like MOHC (and many others) want to replicate a subset of the data for their own local communities of users.
Bulk Download use-case/requirements

We think the high-level use case for bulk download or replication is something like:
1. a user, or agent (like the replication system), has a wish list of diagnostics from experiments (usually all models, institutes)

2. the user/agent wants to know what data is in repository to match the wish list (the find or listing problem)

3. the user/agent then copies the files from the diagnostics available that meet the wish list.
Commentary on bulk download

The need to automate underlines the importance of having PKI access to all nodes working (so we can do 3). It also introduces two significant issues.
The first is in listing/finding data. As you know there is a problem with the reliability/accuracy of gateways - they do not know about all data. Although there are plans to extend the list/find I understand these are in their infancy and are concentrating around API. Although API is an issue, we think reliability/accuracy are more important. We can probably tolerate a day’s lag between the listing and what is really on disk. Do you know when the gateways will be this up to date?
This problem with reliability/accuracy is one of the things that lead me (Jamie) to try and bypass the gateways completely and go straight to the data nodes - though this also has some problems, but I still think this its the lowest risk option for us, at this time, even if its not the best 'long term option'.

The second major issue is enabling us to check the integrity of the copy of data. We understood this is one place where checksums are useful – to do this integrity check. There is a risk that without a way of comparing the replicated file with the original file then errors will be propagated through the system. I understand there is evidence of a problem with integrity of data,
There is also a minor point here. As all data nodes do not store their data on disk in a way that reflect the DRS it is not possible (in code) to make a short cut inference from the thredds DRS identifier to the thredds URL of the download command. This means we have to write a bit more code to get from the DRS identifier to the download. It would be simpler if we could just make the direct mapping from the DRS to the download URL. I agree this is a relatively minor issue – but it would not surprise me if many people expected things to be this
way. (see for instance: http://esg-dev1.badc.rl.ac.uk/questions/20/file-paths-inside-wget-scripts-seem-to-vary-somewhat)
Elaboration on the bulk download use case – repository revisions and versioning

The CMIP5 repository may have revisions. These revisions take different forms: new data files, retracted/deleted data files, revised data files. Users will want to respond to revisions to keep their local copies of the diagnostics on their wish list up to date.
We have included several types of update together here under 'repository revision', including simply adding new data. This is just one way of looking at the repository updates, it is not the only one.

The user (or agent) needs to

1. know there has been a revision
2. know what prompted this revision - so we can make a judgement on whether to update our local version or not. I think this is a bit like a commit message for a code repository. For instance is the revision completely new data, simply an extension, or was there an error in a diagnostic that means it’s likely to be unsuitable for some particular scientific use. This is not essential, but would help. I think BADC are looking at this problem.
3. know what data files have changed - the level of change we see is at the publication dataset level, but not all files will have changed within this publication dataset. We don't want to download files we already have - it wastes bandwidth (time) and local storage space.
4. have the new versions of files visible and available for download (I mention this because I think there is a bug in the way BADC are revising the catalogues when we submit a new version - which means the newest version is not available).
5. occasionally down load previous versions. I think this is relatively rare, but may be needed for instance in checking reproducibility of certain results. When we do this we need to know what version of a file we are using.

There is also a general (and one more specific) data provider requirement
around repository revisions as well.

6. the general one is related to 4: data providers want to be able to ensure that all the data they have submitted is available, at the right version. In a sense this is a testing exercise while the system is still fairly immature.
7. the more specific one is that there is currently no way (as far as we know) to retract a few atomic data sets from the repository without retracting the whole publication level data set. We have had real examples where we have found a problem with the way we have calculated a couple of diagnostics, we'd like to be able to retract just these diagnostics, without retraction all the diagnostics within the same publication dataset.
Do you agree that these are reasonable requirements?
Commentary on repository revisions
It is not clear to us how the ESG system proposes to expose the information implied by the requirements. If this is just a communication issue please let us know. Also if you think we are worrying unnecessarily about versioning please tell us why.
4 is clearly a concern, but Stephen Pascoe is looking at it. We are thinking of using listing/find services to help with 1. We could use checksums (if available) to help with 3.

We currently use one of the gateways when checking that our data has arrived (6) but this is not the ideal interface for this job, and is increasingly slow as the number of data sets increases.
As the data is stored on disk, not just in the catalogues, we think there are potential issues when you allow data nodes to implement local policies on how they store their data on disk. I don’t think these are causing particular problems at the moment, as the full set of use cases is not yet being exercised. Your testing may give you more information on whether there are any issues here.
The issues we are aware of are:

1. data nodes that do not have version number in their disk directory structure may not be able to provide access to previous versions of data. This includes BCC, CCMA, CNRM, NCCS. We accept there are ways round this but are not sure what the proposed solution is.

2. data nodes that have different policies for the disk directory structure will not be able to share software for handling versioning. For instance, we understand, to minimise disk use, there is some handling of symbolic links. This is fairly intricate and it is easier to maintain (fix bugs, enhance) if you have only one bit of software dealing with these links. At the moment I think PCMDI have a different disk directory structure to other nodes.

Other Issues

There are a few other issues, we are aware of, one of which is a
communication problem.

1. Both as data providers and data users we a confused by what the implications of QC are. Is this documented anywhere?
2. Some users are asking for ftp access to the data. I don't know if you plan to respond to this request - but its going to be hard for users to use if the different data nodes have different directory structures.
