
ESGF Meeting / Tech Workshop Notes
FINAL: 2010/07/21

Contents

Attendees
Possible project names
Governance
Development Model
System Components / Features
Roadmap

Attendees

● V. Balaji
● Gavin Bell
● Luca Cinquini
● Bob Drach
● Estanislao Gonzalez
● Stephan Kindermann

● Ross Miller
● Eric Nienhouse
● Serguei Nikonov
● Stephen Pascoe
● F. Wang

Possible project names
● ESGF
● ESGI (Infrastructure)
● COESDI (Community-Owned Earth System Data Infrastructure) Balaji’s favorite
● CESDI (Community Earth System Data Infrastructure)
● ESDI (Earth System Data Infrastructure)

The term ESG has the advantage that it is a recognised brand but the “G” (Grid) is somewhat
devalued these days. Similarly ESGF is recognised as the federation deploying CMIP5
but “Federation” implies people rather than infrastructure and suggests the remit is very close
to GO-ESSP. A term replacing “Grid” with “Data” and “Federation” with “Infrastructure” would
better fit the remit but would dilute the ESG brand. COESDI is the most descriptive but is a bit
long.

Until the name is decided this document will use the name ESGF for the project and ESGF
technical working group for the participants at the workshop.

Governance
● The ESGF technical working group operates under the governance of GO-ESSP PIs.
● ESGF’s relationship to GO-ESSP: GO-ESSP is a larger group, an open forum for

sharing ideas, while ESGF has a much narrower scope, focused on implementing and

operating a working community-owned infrastructure. In the short term, it is focused on
enabling CMIP5.

● Central coordination of priorities and gathering of requirements are the responsibility of
GO-ESSP PIs

● Technical issues should be delegated by the PIs to the working group. The roadmap
below establishes the initial priorities and tasks agreed to by the technical working
group.

● ESGF will establish itself in an institution agnostic entity under the project name
selected.

● The role of “Coordinator” has been created. This role is given to the individual
responsible for managing a given component or set of components (responsibilities
described below).

Development Model
● Web Presence and Documentation

○ Decision: evaluate hosting the project on Google Projects, evaluate how much
customization can be provided, and what is the functionality (Wiki, documents
upload,...)

○ All members of ESGF should have write access to the top-level web pages
○ Top level ESGF page to link back to each component’s home site, which should

have same look and feel
○ Preferably the top-level domain should look neutral, e.g esgf.org. Alternatively

everyone maintains an esgf.my.institution whose top-level homepage looks the
same everywhere.

○ project-voldemort.com as an example of multiple projects/components unified
under single presentation scheme.

● Licenses
● All software components must be open source.
● Recommendation: BSD License is compatible with most open source licenses.
● Recommendation: Default - Use BSD License used by the esg-node project.

● How to handle tasking and cross-dependence?
○ look at apache commons
○ components with agreed-upon interfaces (needs a process to agree interfaces)
○ first step: access to each others’ trackers
○ perhaps a top-level tracker to record cross-dependencies

● Component Management
○ Each system component, or implementation thereof, should have a “Coordinator”

that manages its documentation, development, testing and integration with the
rest of the system.

○ The component architecture working group, currently the ESGF coordinating
members, will define the overall component architecture.

○ Open question: how to manage change to some components that affect other
components (example: Metafor live feed breaking the ESG XML parsing)

○ There will be a process such as a new software component is entered into the

official ESGF distribution as either a default or alternative implementation of
some functionality.

○ Each component must CLEARLY document its API and strive to maintain
its API immutable as the back-end implementation possibly changes.

● Coding Standards
● Recommendation: for new components, use a scheme to name java packages

and python modules.
● Recommended Development Tools

○ Source code repository - GIT
○ Unit Testing - JUnit (Java), Nose (Python)
○ Artifact Repository - Ivy (Java)

ESGF Presentation
● Separate ESGF domain name (.org) and web site.

● Common look and feel for ESGF site and it’s components.

● Consistent top N page content (overview, about, sponsors, etc...)

● Component Documentation / Web presence: Each component has its own web page
with its content hierarchy under the purview of its coordinator and may be hosted at
coordinator’s home organization.

● Component Versioning: Each coordinator is responsible for the version number of their
component(s). Recommended: 4 numeric value for version scheme #.#.#.# (the 4th,
least significant value, is optional).

● Progress Reporting: Each component site must have a page expressing the
expectations and direction of future development. This may take the form of a Gantt
chart, or TODO list with expected completion times.

System Components / Features
The working group identified the components and features that characterise the system. These
are itemised below and will form the basis of Information overview and component overview
documents (see roadmap)

● Security
○ User registration
○ Authentication (Identity Provider, Relying Party)
○ Attribute Service
○ Authorization Service

● Publisher
○ Production and availability of data catalogs
○ Production and availability of semantic metadata

● Search/Browse
○ Ingestion of data catalogs and semantic metadata
○ Query services
○ Model metadata track-back (inverted index)

● Metadata exchange
● Data Access

○ Files download
■ Browser-based download
■ Scripted bulk download
■ Rich client bulk download
■ Deep storage retrieval

○ Server-side operations
■ Regridding
■ Sub-setting
■ Ensemble statistics

○ Visualization
● Reliable Data Movement

○ Replication
○ Checksums

● Metrics
● Notification
● Monitoring
● Installer scripts
● Framework

○ Inter-component communication (Manager)
○ Introspection (what components are installed)
○ Scheduler

Roadmap
● The group will collaborate on information overview and component overview documents,

lead by Stephen.
● The group recommends we extend it’s membership to better represent certain key

technology areas. Specifically we would like to invite a member in these areas from our
other partner institutions.

○ LAS/UI
○ Security
○ Data Movement
○ Metadata

● Gavin to polish the Data Node Manager code such that:
○ It can be bootstrapped without any component dependency
○ Does not require any other peer by default (peers can be registered afterward)
○ A sample “Echo” component can demonstrate invocation of events and retrieval

of information
○ Gavin will provide design document on Data Node manager framework

● Luca to write XML parsing code that allows for configuration-driven registration of
components

● Gavin to setup tools environment that includes Git, Ivy, Junit and Hudson (with some
little documentation)

● Bob: determine if PCMDI can provide documentation web site and support at PCMDI
using Plone, with neutral domain name like esgf.org. For now, the site will contain a set
of links to external documentation that must be open. Later, revisit how the web site is

working and possibly move everything to another CMS.
● Luca to insert the security filters and ORP in the GIT repository
● Luca to work on solr-based search:

○ Insert into datanode manager framework
■ Need access to PCMDI GIT repository

○ Possibly insert into current Gateway framework
■ Includes plugins for faceted search on the gateway
■ Includes metadata exchange via OAI
■ Need access to NCAR SVN repository

● ORP filter authentication will be an option for datanodes by the August 16th release of
the Gateway. Datanodes can decide which authorisation filter to use and Gateways will
be able to support either. Gateways at PCMDI, NCAR and BADC will be updated to
support this feature.

● ORNL to experiment with providing a data node component that generates wget scripts
once it receives a set of dataset ids and possibly a set of filters like time range, variable
name match, product=request|output etc.

● DKRZ to generalize the staging filter to any mass store and make it available as part of
the ESG distribution

● Search on complex metadata: start conversation with both Metafor and ESC teams to
possibly provide a component that performs search and browsing of complex metadata
objects:

○ Modularization of ESC trackback functionality
○ Search on CIM XML documents

● Evaluate how Python modules can be invoked from the Data Node manager framework
○ Luca, Bob, Stephen, ...: Wrap python calls via a Python application

framework (pylons, django, webpy, etc.) to localhost (same as CGI scripting)
○ Or, use Apache in front of Tomcat and python engine

● Establish monthly teleconference of the ESGF Technical Working Group - first one
around end of August

