
UDT as an Alternative Transport Protocol for GridFTP

John Bresnahan,1,2,3 Michael Link,1,2 Rajkumar Kettimuthu,1,2 and Ian Foster1,2,3
1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

2Computation Institute, University of Chicago, Chicago, IL 60637
3Department of Computer Science, University of Chicago, Chicago, IL 60637

Abstract

GridFTP has emerged as a de facto standard
for secure, reliable, high-performance data
transfer across resources on the Grid. By
default, GridFTP uses TCP as its transport-
level communication protocol. It is well known
that TCP Reno cannot provide satisfactory
performance on high-speed, long-delay
networks. In this paper, we describe how we
enabled GridFTP to use UDT as an alternative
transport-level communication protocol. We
compare the performance of GridFTP over
UDT with GridFTP over TCP on various test
beds. We also study the impact of UDT on bulk
TCP flows.

1. Introduction
GridFTP [1] has been commonly used as a data
transfer protocol in the Grid. The GridFTP
protocol extends the standard FTP protocol and
provides a superset of the features offered by
the various Grid storage systems currently in
use. Key features of GridFTP include the
following:
Security: The Globus GridFTP [2]
server/client utilizes the GSI protocol, which
not only enables a secure Public Key
Infrastructure (PKI) interface but also adds the
capability of delegated authority via X.509
certificates. Delegated authority is critical for
large collaboration efforts and enables single
sign-on in virtual organizations, thereby
eliminating the need for the user to enter
passwords onto what can be hundreds of
different sites. Kerberos is also supported.
Parallelism: On wide-area links, using
multiple TCP streams in parallel between a
single source and destination can improve
aggregate bandwidth relative to that achieved
by a single stream. GridFTP supports such
parallelism via FTP command extensions and

data channel extensions.
Striping: Additionally, GridFTP supports
striped data movement, in which data
distributed across, or generated by, a set of
computers or storage systems at one end of a
network is transferred to another remote set of
storage systems or computers.
Third-Party Control: GridFTP also allows
secure third-party clients to initiate transfers
between remote sites, thereby facilitating the
management of large datasets for distributed
communities.
Partial File Transfer: Some applications can
benefit from transferring portions of files rather
than complete files. GridFTP supports requests
for arbitrary file regions.
Reliability: GridFTP provides support for
reliable and restartable data transfers.
Negotiation of TCP buffer/window sizes:
GridFTP employs FTP command and data
channel extensions to support both automatic
and manual negotiation of TCP buffer sizes for
large files as well as large sets of small files.

The Globus implementation of GridFTP
provides a software suite optimized for the
gamut of data access issues—from bulk file
transfer to the details of getting data out of
complex storage systems in sites. Although
GridFTP supports multiple TCP streams to
overcome the limitations of TCP congestion
control algorithm for long, fat networks [3-5], it
is still not possible to utilize the available
bandwidth optimally in some situations. UDP
based Data Transfer protocol (UDT) [6] is a
popular application level data transport
protocol that addresses the limitations of TCP
in fast, long-distance networks. In this paper,
we describe the following:

- Development of a Globus XIO driver
for UDT

 2

- Enhancements done to Globus GridFTP
to use UDT as an alternate transport
protocol

- Experimental study comparing the
performance of GridFTP with TCP and
UDT as the transport level protocols

- Experimental study of the impact of
GridFTP with UDT on GridFTP with
TCP flows.

The rest of the paper is organized as follows. In
Section 2, we provide an introduction of UDT.
In Section 3, we describe the development of
Globus XIO driver for UDT. In Section 4, we
highlight the enhancements done to Globus
GridFTP. In Section 5, we present the
experimental studies; and in Section 6, we
summarize our results.

2. UDT
TCP’s congestion control algorithm is window
based and every time a congestion event is
detected, the window size is reduced to half.
After the detection of first congestion event, the
window size is increased at most one segment
each round-trip time regardless of how many
acknowledgments are received in that round-
trip time. This congestion control algorithm has
significant limitations on fast, long-distance
networks. Researchers have come up with
numerous solutions to address the limitations of
the above-mentioned TCP’s AIMD-based
congestion control mechanism [7]. These
solutions include improvements to TCP [8-14],
new transport protocols such as XCP [15], XTP
[16] and reliable layers on top of UDP [6, 17-
23].

UDT [6] is an application-level data transport
protocol that uses UDP to transfer bulk data,
while implementing its own reliability and
congestion control mechanisms. UDT achieves
good performance on high-bandwidth, high-
delay networks in which TCP has significant
limitations. UDT uses UDP packets to transfer
data and retransmit the lost packets to

guarantee reliability. UDT’s congestion control
algorithm combines rate based and window
based approaches to tune the inter-packet time
and the window size, respectively. The
congestion control parameters (window size
and inter-packet time) are updated dynamically
by a bandwidth estimation technique. UDT is
popular among the application level solutions
to address TCP limitations and it has been
shown to be friendly to short-lived TCP flows
[6].

3. Globus XIO Driver for UDT
GridFTP uses the Globus Extensible Input
Output (XIO) [24] interface to invoke network
I/O operations. The Globus XIO framework
presents a single, standard open/close,
read/write interface to many different protocol
implementations, including TCP, UDP, HTTP,
and file—and now UDT. The protocol
implementations are called drivers. Once
created, a driver can be dynamically loaded and
stacked by any Globus XIO application. Many
drivers have been created by using the native
Globus XIO assistance APIs, including TCP,
UDP, HTTP, File, Mode E [1], Telnet,
Queuing, Ordering, GSI, and Multicast
Transport [25]. For other evolving protocols, if
an implementation already exists, requiring the
developers to implement their protocols by
using native Globus XIO APIs would
necessitate considerable effort.

Recognizing the benefit of providing wrapper
code to hook these libraries into the Globus
XIO driver interface, we therefore introduce the
wrapblock feature to Globus XIO. This is a
simple extension to the original Globus XIO
driver interface that allows for much easier
creation of drivers. The stock Globus XIO
driver interface is written in an asynchronous
model. While this is the most scalable and
efficient model, it is also the most difficult to
code against. Further, many existing protocol
implementations do not have asynchronous
APIs, and transforming them into an

 3

asynchronous model can be time consuming.
The wrapblock functionality uses thread
pooling and event callback techniques to
transform the asynchronous interface to a
blocking interface. This makes the task of
creating a driver from an existing library easier.

static
globus_result_t
globus_l_xio_udt_write(

void * driver_specific_handle,
const globus_xio_iovec_t * iovec,
int iovec_count,
globus_size_t * nbytes)

{
 globus_result_t result;
 xio_l_udt_handle_t * handle;
 GlobusXIOName(globus_l_xio_udt_write);
 handle = (xio_l_udt_handle_t *)

driver_specific_handle;
 *nbytes = (globus_size_t) UDT::send(
 handle->sock, (char*)iovec[0].iov_base,
 iovec[0].iov_len, 0);
 if(*nbytes < 0)
 {
 result = GlobusXIOUdtError("UDT::send failed");
 goto error;
 }
 return GLOBUS_SUCCESS;
 error:
 return result;
}

Fig. 1. Sample wrapblock write interface
implementation for UDT.

To illustrate the ease in creation, we present in
Figure 1 the code required to implement write
functionality for UDT. The implementation
requires a simple pass-through call to the UDT
library. The number of bytes written is passed
back to Globus XIO by reference in the nbytes
parameter. The data structure
xio_l_udt_handle_t is created in the open
interface call and is passed to all other interface
calls as a generic void * memory pointer. This
allows the developer to maintain connection
state across operations. Similar code is written
to handle reading data. In the open and close
interface function, the initialization and cleanup
of resources are done as would be expected.
The code inside the driver looks much like a

simple program using the third-party API.
There is little Globus XIO–specific code
beyond the interface function signatures. There
are driver-specific hooks that allow the user to
directly interact with the driver in order to
provide it with optimization parameters. This
interaction is handled via cntl functions that
look much like the standard UNIX ioctl().

4. GridFTP Enhancements
A new command has been added to the
GridFTP protocol to add drivers to the data
channel stack.

SITE SETDCSTACK {<driver name>[:<driver
options>],}+

The second parameter to the site command is a
comma-separated list of driver names
optionally followed by a : and a set of driver
specific url-encoded options. From left to right
the driver names form a stack from bottom to
top. For security reasons the GridFTP server
does not allow clients to load arbitrary xio
drivers into the server. The GridFTP server
admin must white list the driver individually,
using the ‘-dc-whitelist‘ option to the server.

5. Experimental Studies
We compare the performance of Iperf, scp,
bbcp, GridFTP over TCP (both single and
multiple streams), GridFTP over UDT, and raw
UDT on four different networks—a wide-area
network between Argonne National Laboratory
(ANL) and the University of Auckland, New
Zealand, with a round-trip time of 204 ms; a
wide-area network between ANL and Los
Angeles, with a round-trip time of 60 ms; a
wide-area network between the Ohio State
University and JA site in Japan, which is a part
of the Japan Gigibit Network II project, with a
round-trip time of 193 ms; and a wide-area
network between the JA site and Oak Ridge
National Laboratory, with a round-trip time of
194 ms. To the best of our knowledge, all the
pairs of the sites used in the experiments have 1
Gbit/s (maximum possible bandwidth)

 4

connectivity. The operating system on all the
nodes used in the experiments is Linux. TCP
Reno is used in all the experiments.

Table 1: Throughput (in Mbit/s) achieved when
transferring 1 GB of data over two wide-area

networks, using various mechanisms

5.1 Throughput
In these experiments, 1 GB of data was
transferred between the end points. Table 1
shows the throughput achieved in megabit per
second. We noted that the performance of
GridFTP over TCP is comparable to the
performance of iperf and is significantly better
than scp and bbcp. GridFTP over UDT

outperforms the best possible throughput
obtained with TCP by a factor of 4 on two
testbeds (ANL-NZ and ANL-ISI).

Table 2: Throughput (in Mbit/s) for
nonconcurrent and concurrent GridFTP over
TCP and GridFTP over UDT flows on Japan-

ORNL testbed
GridFTP-TCP 132.1 Nonconcurrent

flows GridFTP-UDT 416.8

GridFTP-TCP 120.1 2 Concurrent TCP
flows GridFTP-TCP 118.6

GridFTP-UDT 403.2 2 Concurrent UDT
flows GridFTP-UDT 404.6

GridFTP-TCP 122.6 2 Concurrent flows
(1 TCP and 1 UDT) GridFTP-UDT 404.3

GridFTP-TCP 122.6
GridFTP-TCP 123.2

3 Concurrent flows
(2 TCP and 1 UDT)

GridFTP-UDT 405.7

GridFTP over UDT outperforms GridFTP over
TCP (single stream) by a factor of 3 on the
other two testbeds (BMI-Japan and Japan-
ORNL). GridFTP over TCP (with 8 streams)
performs as well as GridFTP over UDT on the
BMI-Japan testbed and interestingly it
outperforms GridFTP over UDT on the Japan-
ORNL testbed. Two concurrent UDT flows
achieve about 400 Mbit/s each (Table 2) but a
single UDT flow alone gives only about 400
Mbit/s on the Japan-ORNL link. We suspect
that, for some reason, the probing mechanism
employed by UDT to determine the available
bandwidth detects the available bandwidth to
be around only 400 Mbit/s on the Japan-ORNL
link. We could not get bbcp numbers on the
ANL-NZ testbed because of firewall problems.
The BMI-Japan testbed and the Japan-ORNL
testbed had autotuning of TCP buffer size
enabled; hence, the TCP buffer size was not
explicitly set to the bandwidth-delay product
(in fact, setting the TCP buffer size to
bandwidth-delay product on these nodes
reduced the throughput by multiple folds). On
the other two test beds, the TCP buffer size was

 Testbed
Transport
Mechanism

ANL
- NZ

ANL
- ISI

BMI -
Japan

Japan –
ORNL

Iperf – 1 stream 19.7 74.5 59 110
Iperf – 8
streams

40.3 117.0 115.3 592.4

scp – 1 stream 2.96 9.6 3.13 3.14
bbcp mem – 1
stream

- 35.3 5.84 118.2

bbcp mem – 8
streams

- 59.2 11.7 467.25

bbcp disk – 1
stream

- 35.15 5.85 112.6

bbcp disk – 8
streams

- 54.8 11.7 451.3

GridFTP mem
TCP – 1 stream

16.4 63.8 79.6 123.3

GridFTP mem
TCP – 8 streams

40.2 112.6 222 586.5

GridFTP disk
TCP – 1 stream

16.3 59.6 73.6 113.5

GridFTP disk
TCP – 8 streams

37.4 102.4 201.6 574.6

GridFTP mem
UDT

189.7 426.6 238 382.5

GridFTP disk
UDT

187.9 418.3 220.5 380.6

UDT mem 202.3 432.5 246.3 397.2

UDT disk 174.2 398.0 211.6 374.5

 5

set to bandwidth-delay product for the GridFTP
over TCP transfers. We note that the
performance of GridFTP over UDT is close
(about 95% or more) to that of raw UDT in
case of memory-to-memory transfers. It is
interesting to note that GridFTP over UDT
outperforms raw UDT in case of disk-to-disk
transfers. We believe that this is because the
UDT test application may not be optimized for
disk I/O.

5.2 Impact of UDT on TCP flows
We ran GridFTP over UDT and GridFTP over
TCP transfers concurrently to measure the
impact of UDT on bulk TCP flows. For these
tests, we did only memory-to-memory transfers
(/dev/zero to /dev/null). We did not transfer a
fixed amount of data for these tests, rather we
ran the transfers until they attain steady
throughput. This is the reason for the higher
throughput for nonconcurrent UDT flows in
Table 2 and Table 3 compared to those of in
Table 1 for the BMI-Japan and Japan-ORNL
testbeds.

Table 3: Throughput (in Mbit/s) for
nonconcurrent and concurrent GridFTP over
TCP and GridFTP over UDT flows on BMI-

Japan testbed
GridFTP-TCP 80.1 Nonconcurrent

flows GridFTP-UDT 240.2

GridFTP-TCP 78.6 2 Concurrent TCP
flows GridFTP-TCP 79.2

GridFTP-UDT 120.5 2 Concurrent UDT
flows GridFTP-UDT 126.4

GridFTP-TCP 42.4 2 Concurrent flows
(1 TCP and 1 UDT) GridFTP-UDT 187.6

GridFTP-TCP 26.5
GridFTP-TCP 34.6

3 Concurrent flows
(2 TCP and 1 UDT)

GridFTP-UDT 164.4

From Table 2, we see that UDT does not affect
the throughput of the concurrent bulk TCP
flows on Japan-ORNL testbed, whereas on the
BMI-Japan testbed, UDT does have some

impact on the bulk TCP flows. But we note
from Table 3 that UDT does reduce its rate to
accommodate the TCP flows.

We also ran some tests to compare the system
resources utilized for GridFTP-TCP and
GridFTP-UDT transfers. For these tests, we
used the TeraGrid [26] network between ANL
and ORNL, as the performance of TCP and
UDT is comparable on this testbed. Both TCP
and UDT achieved a throughput around 700
Mbit/s on this testbed. The CPU utilization for
TCP transfers was in the range of 30–50%,
whereas for UDT transfers it was around 80%.
The memory consumption was around 0.2% for
TCP and 1% for UDT.

6. Summary
We described how we enhanced the Globus
GridFTP server and the framework to use UDT
as an alternative transport level protocol for
TCP. We discussed the wrapblock feature in
Globus XIO that aided in the creation of the
UDT driver. We presented experimental studies
comparing the performance of GridFTP over
UDT with GridFTP over TCP. We showed that
UDT outperformed single-stream TCP on all
the four testbeds and multistream TCP on three
testbeds. We also reported on the impact of
UDT on bulk TCP flows and the system
resources utilized by UDT and TCP transfers.
Overall, although UDT does use more system
resources than TCP, it achieves significantly
higher throughput compared to TCP and
reduces its rate to accommodate the competing
TCP flows.

Acknowledgments
This work was supported in part by the Office
of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy, under
Contract DE-AC02-06CH11357, and in part by
National Science Foundation’s CDIGS.

References
[1] W. Allcock, “GridFTP: Protocol extensions to

 6

FTP for the Grid,” Global Grid ForumGFD-R-
P.020, 2003.
[2] W. Allcock, J. Bresnahan, R. Kettimuthu, M.
Link, C. Dumitrescu, I. Raicu, and I. Foster, “The
Globus striped GridFTP framework and server,”
SC'05, ACM Press, 2005.
[3] D. Katabi, M. Handley, and C. Rohrs, “Internet
congestion control for future high bandwidth-delay
product environments,” ACM/SIGCOM, 2002.
[4] S. Floyd, “High-speed TCP for large congestion
windows,” RFC 3649, Experimental, December
2003.
[5] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP:
motivation, architecture, algorithms, performance,”
in Proceedings of the IEEE Infocom, March 2004.
[6] Y. Gu and R. L. Grossman, “UDT: UDP-based
data transfer for high-speed wide area networks,”
Comput. Networks 51, 7 (May. 2007), 1777–1799.
DOI=http://dx.doi.org/10.1016/j.comnet.2006.11.00
9
[7] Allman, M., Paxson, V. and Stevens, W. TCP
Congestion Control. IETF, RFC-2581, 1999.
[8] Floyd, S. HighSpeed TCP for Large Congestion
Windows. IETF, RFC 3649, 2003.
[9] Jin, C., Wei, D.X. and Low, S.H., FAST TCP:
motivation, architecture, algorithms, performance.
IEEE Infocom, 2004.
[10] Kelly, T., Scalable TCP: Improving
Performance in High-Speed Wide Area Networks.
First International Workshop on Protocols for Fast
Long Distance Networks, 2003.
[11] Ha, S., Rhee, I., and Xu, L. 2008. CUBIC: a
new TCP-friendly high-speed TCP variant. SIGOPS
Oper. Syst. Rev. 42, 5 (Jul. 2008), 64-74. DOI=
http://doi.acm.org/10.1145/1400097.1400105
[12] R. Shorten, and D. Leith, "H-TCP: TCP for
High-Speed and Long-Distance Networks,” Second
International Workshop on Protocols for Fast Long-
Distance Networks, February 16-17, 2004,
Argonne, Illinois USA
[13] T. Hatano, M. Fukuhara, H. Shigeno, and K.
Okada, "TCP-friendly SQRT TCP for High Speed
Networks," in Proceedings of APSITT 2003,
pp455-460, Nov 2003.
[14] L. Xu, K. Harfoush, and I. Rhee, "Binary
Increase Congestion Control (BIC) for Fast Long-
Distance Networks,” INFOCOM 2004, March 2004
[15] Katabi, D., Handley, M. and Rohrs, C.,
Congestion Control for High Bandwidth-Delay
Product Networks. Sigcomm, 2002.
[16] Strayer, W.T., Lewis, M.J. and Cline Jr., R.E.

XTP as Transport Protocol for Distributed Parallel
Processing. USENIX Symposium on High-speed
Networking. 1994.
[17] Tsunami Network Protocol Implementation,
2004. www.indiana.edu/~anml/anmlresearch.html.
[18] Chien, A., Faber, T., Falk, A., Bannister, J.,
Grossman, R. and Leigh, J. Transport Protocols for
High Performance: Whither TCP? Communications
of the ACM, 46 (11). 42-49. 2003.
[19] Clark, D., Lambert, M. and Zhang, L.
NETBLT: A Bulk Data Transfer Protocol. IETF,
RFC 998, 1987.
[20] Gu, Y. and Grossman, R.L., UDT: An
Application Level Transport Protocol for Grid
Computing. Second International Workshop on
Protocols for Fast Long-Distance Networks, 2003.
[21] He, E., Leigh, J., Yu, O. and DeFanti, T.A.,
Reliable Blast UDP: Predictable High Performance
Bulk Data Transfer. IEEE Cluster Computing,
2002.
[22] Sivakumar, H., Grossman, R.L., Mazzucco,
M., Pan, Y. and Zhang, Q. Simple Available
Bandwidth Utilization Library for High-Speed
Wide Area Networks. Journal of Supercomputing.
2004.
[23] Qishi Wu, Nageswara S. V. Rao: Protocol for
high-speed data transport over dedicated channels.
Third International Workshop on Protocols for
Long-Distance Networks (PFLDnet 2005), Lyon,
France, Feb. 2005
[24] W. Allcock, J. Bresnahan, R. Kettimuthu, and
J. Link, ”The Globus eXtensibleInput/Output
System (XIO): A protocol independent I/O system
for the Grid,” in Proceedings of the 19th IEEE
international Parallel and Distributed Processing
Symposium (Ipdps'05) - Workshop 4, Vol. 5 (April
4-8, 2005). IPDPS. IEEE Computer Society,
Washington, DC, 179.1. DOI=
http://dx.doi.org/10.1109/IPDPS.2005.429
[25] K. Jeacle and J. Crowcroft, “A multicast
transport driver for Globus XIO,” in WETICE ’05:
Proceedings of the 14th IEEE International
Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise.
Washington, DC: IEEE Computer Society, 2005,
pp. 284–289.
[26] TeraGrid. http://www.teragrid.org.

