
CMIP5 Dataset Version Directory Structure
Stephen Pascoe, Version 0.4, 2010-04-19

This document recommends a directory layout for supporting multiple versions of datasets within
the CMIP5 archive. In drawing up this proposal the following factors have been considered:

1. The structure should conform as closely as possible to the CMIP5 Data Reference Syntax
document [DRS].

2. The structure should be workable with the current ESG publisher software.

3. The structure should present a consistent user interface for downloading data files.

4. The structure should be manageable by operators of ESGF data nodes.

To give some background each of considerations are discussed below then the proposed directory
structure is described in detail.

1 Discussion of Considerations
The current plans for version control in the CMIP5 archive derive from 2 independent sources: The
DRS document and the ESG publisher software. [MORE]

1.1 DRS Document
The DRS document divides the CMIP5 archive into a set of atomic datasets defined terms of
several components including a version number, therefore it implies datasets are immutable with a
fixed version number. The assumption is that when data within an atomic dataset is superseded a
new dataset is generated with an incremented version number; the original dataset remains
unchanged and available to users.

The DRS document recommends version should be part of the URL syntax used to allow users to
download data and also part of the directory structure used to store the data at the data-node.

The document is not precise on many details of how the DRS version should be used. For instance
how data managers update datasets from one version to another and how data and metadata from
previous versions are stored to maximise efficiency and manageability are not addressed

1.2 ESG Publisher
ESG publisher uses the terms dataset and dataset version to represent a set of files published in one
operation. A dataset version is an immutable object which can represent a 'DRS dataset including
version number'. The published 'dataset version' itself has an identifier which typically consists of
dataset_id+version number; this appears in the THREDDS catalog of the dataset version.
Within ESG Publisher each dataset version is assigned a single dataset id and version number.
Republishing a dataset with a pre-existing dataset id usually triggers a new version of that dataset.
For each dataset version a new THREDDS catalogue is produced. ESG Publisher also detects when
files change such that an updated file will be recorded as a new version of that file. In this case the
ESG publisher database keeps track of the metadata of previous file versions but does not manage
previous versions of the actual files. The paths to files within a dataset can be changed with the
rename operation, however this operation does not increment the version number.

1.3 User Interface to Data Files
It is expected that users will visit an ESG Gateway to generate wget or DML scripts containing lists
of URLs to data files. These URLs should follow the URL syntax suggested in the DRS document.
Importantly the path portion of the URL identifies the atomic dataset and therefore, from the user's
perspective, these URLs will be the primary identifiers of both atomic datasets and files in the
archive. The version directory structure has been designed such that URLs have the following user-
centric features, assuming URLs follow reflect the directory structure:

1. The user has a record of which version of the data they downloaded from the version
numbers embedded in the URLs

2. Running the script still retrieves the original data even after a new version is published
(except for “latest”, see below)

3. URLs can be edited to retrieve other versions of an atomic dataset if the user knows that
version exists.

4. When a new dataset version is published it should be possible for a user to download only
those files that have changed in the new version. This may require tool support.

5. A special DRS version “latest” can be used to retrieve the latest version of a dataset.
Downloading “latest” has the disadvantage that it is not immediately clear to the user which
version you are downloading. Additional tools should be made available to deduce the exact
DRS version of a set of files based on their tracking_id or checksum

6. A possible desirable feature is for wget scripts to support recursive download below the
atomic dataset level so that if the user doesn't know the exact filenames in a dataset version
they can still retrieve it.

1.4 Data Management
Maintaining previous versions of atomic datasets must not put too high a burden on the data
management practices of data-node administrators.

1. If a file is unchanged between versions there should be no need to store the file twice. Using
symbolic links is recommended for solving this problem.

2. Filenames should remain unchanged when a version is superseded.

3. Mixing data files and symbolic links within one directory should be avoided as the
asymmetry complicates data management.

4. It should be possible to remove the data of previous versions without breaking symbolic
links. This will probably require tool support.

2 Proposed Version Directory Structure
The following directory structure directly reflects the DRS path syntax with each atomic dataset in a
single directory whilst maintaining changes between each dataset versions in a separate directory
tree. The directory structure below each atomic dataset directory is divided into a files directory
containing all data files, the directories v<n> containing links to files at a particular version and a
link latest to the most recent v<n> directory.

Within files a series of subdirectories files/p<n> contain files changed or added at each version.
This is illustrated with the following scenario of an atomic dataset at 3 successive versions.

2.1 Advantages to this structure
1. The filesystem holds a record of versions and version changes independently. Directories

v<n> hold versions and directories files/p<n> hold version changes.

2. No files need moving between version changes.

3. Links and files are completely separated.

4. Users could update a dataset simply by downloading files in a files/p<n> directory.

2.2 Disadvantages to this structure
1. The link latest is fairly complex, pointing to a v<n> directory containing links to multiple

files/p<n> directories.

2. Removing previous versions is complex. If v1 and files/p1 were removed f1.nc would need
to be moved to files/p2 and all symbolic links to it updated.

Version 1: Add f1.nc and f2.nc

Version 2: Replace f2.nc, add f3.nc

Version 3: Replace f2.nc and f3.nc

2.3 Publishing atomic datasets
It is expected that ESG publisher will publish multiple atomic datasets as realm datasets. There is
therefore a potential mismatch between the dataset version as recorded in ESG publisher and the
version of each individual atomic dataset. This could be resolved by:

1. When a realm dataset changes all atomic datasets are republished as new versions. This
would lead to new atom datasets that are unchanged from their previous versions.

2. When a realm dataset changes only those atomic datasets that have changed are republished
as new versions. This would make the realm dataset version independent of any atomic
dataset version.

Both these options are likely to be very confusing to users without clear guidance and software
support. Ideally the user should only be aware of a single concept of version. This would be
achieved by no. 1 above however, if a version change affected only a small part of a realm dataset,
no. 1 could lead to a large number of duplicate symbolic links.

2.4 User download experience
When a new dataset version is published users will wish to download only those parts of the dataset
that have changed. This information is contained in the files/p<n> subdirectories that are not
expected to be visible to the user. We therefore need a service to provide users with wget scripts to
download these changes.

2.5 Version Transition Procedure
An important consideration is how the version directory structure is manipulated during version
changes. In general the procedure of moving an atomic dataset from one version to another is as
follows.

1. Files are deposited in the atomic dataset directory by CMOR or manually.

2. The new files are moved into latest. If a new file replaces an existing one the old file is
moved to old/v<n>.

3. The symbolic link directories v<n> are updated to reflect any files that have moved.

A more detailed algorithm is outlined below with reference to the transition between version 2 and
version 3.

Step 1: The new files f2.nc and f3.nc are
deposited in the atomic dataset directory.

Step 2: Create directory p2 and move all new
files into it.

Step 3: Create directory v3. For each file f in
files/p3 create links v3/f → files/p3/f. For each
link f in v2 where f is not in v3 duplicate the link
in v3. Change latest to point to v3

3 Old Version Directory Structure Recommendation
The Old directory structure recommendation is included here for reference.

The directory structure below each atomic dataset directory is divided into 2 groups of
subdirectories: files and links. The latest and old directories contain the data files. The latest
directory always contains the files for the latest version and old/v<n> contains those files that
existed in previous versions but not in the latest.

The directories v<n> (not to be confused with old/v<n> above) contain symbolic links to the files
available for each version n.

This is illustrated with the following scenario of an atomic dataset at 3 successive versions.

Version Contents / Change Directory Structure
1 f1.nc, f2.nc

2 f2.nc replaced, f3.nc
added

3 f2.nc and f3.nc
replaced

3.1 Advantages to this structure
5. The two groups of subdirectories mirror the two approaches taken by the DRS document

and ESG Publisher. The subdirectories latest and old represent a mutable view of the
atomic dataset whereas the subdirectories v<n> represent an immutable view of atomic
dataset versions.

6. Filesystem complexity is confined to previous versions. latest always contains the files of
the most recent version and the most recent v<n> directory always contains links to latest.

7. Links and files are completely separated.

8. Data files for previous versions can be removed with manageable implications for fixing
broken links. For instance if old/v1 and v1 were deleted a relatively simple algorithm could
detect and move the link v2/f2.nc to point to old/v2/f2.nc.

3.2 Disadvantages to this structure
1. Creating backups may become more complex because files are moved during version

changes.

3.3 Version Transition Procedure
An important consideration is how the version directory structure is manipulated during version
changes. In general the procedure of moving an atomic dataset from one version to another is as
follows.

1. Files are deposited in the atomic dataset directory by CMOR or manually.

2. The new files are moved into latest. If a new file replaces an existing one the old file is
moved to old/v<n>.

3. The symbolic link directories v<n> are updated to reflect any files that have moved.

A more detailed algorithm is outlined below with reference to the transition between version 2 and
version 3.

The new files f2.nc and f3.nc are
deposited in the atomic dataset
directory.

1. Create directory old/v2
2. For each new file f in this

version
1. If latest/f exists and is

different from f move
latest/f to old/v2/f

2. Move f to latest/f

NOTE: At this point symbolic links
v2/f2.nc and v2/f3.nc are wrong.

1. Create directory v3
2. For each file f in latest create

links v3/f → latest/f.
3. For each file f in old/v2 find any

links v1/f → latest/f and change
them to v1/f → old/v2/f

4 Citations
[DRS] CMIP5 Data Reference Syntax (DRS) and Controlled Vocabularies. http://cmip-

pcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax.pdf

	1 Discussion of Considerations
	1.1 DRS Document
	1.2 ESG Publisher
	1.3 User Interface to Data Files
	1.4 Data Management

	2 Proposed Version Directory Structure
	2.1 Advantages to this structure
	2.2 Disadvantages to this structure
	2.3 Publishing atomic datasets
	2.4 User download experience
	2.5 Version Transition Procedure

	3 Old Version Directory Structure Recommendation
	3.1 Advantages to this structure
	3.2 Disadvantages to this structure
	3.3 Version Transition Procedure

	4 Citations

