<div dir="ltr"><div class="gmail-panel-pane gmail-pane-node-title" style="box-sizing:border-box;color:rgb(51,51,51);font-family:"Source Sans Pro",sans-serif"><div class="gmail-pane-content" style="box-sizing:border-box"><h1 style="box-sizing:border-box;margin:20px 0px 10px;font-weight:500;line-height:1.1;color:inherit"><font size="2">Interested applicants are strongly encouraged to contact the Research Advisors early in the application process to discuss project ideas: </font><a href="https://www.usgs.gov/staff-profiles/kevin-d-kroeger" style="font-size:small;background:transparent;box-sizing:border-box;color:rgb(42,100,150);outline:0px">Kevin D Kroeger, PhD</a><span style="font-size:small"> and </span><a href="https://www.usgs.gov/staff-profiles/meagan-eagle-gonneea" style="font-size:small;background:transparent;box-sizing:border-box;color:rgb(42,100,150);outline:0px">Meagan Eagle Gonneea, PhD</a></h1><h1 style="box-sizing:border-box;margin:20px 0px 10px;font-weight:500;line-height:1.1;color:inherit"><font size="4"><a href="https://www.usgs.gov/centers/mendenhall/18-23-predicting-responses-sea-level-rise-and-restoration-diked-salt-marshes">18-23. Predicting responses to sea level rise and restoration in diked salt marshes</a></font></h1></div></div><div class="gmail-panel-pane gmail-pane-entity-field gmail-pane-node-field-intro gmail-pane-border gmail-lead" style="box-sizing:border-box;margin-bottom:20px;line-height:1.4;border-bottom:1px solid rgb(238,238,238);padding-bottom:20px;color:rgb(51,51,51);font-family:"Source Sans Pro",sans-serif"><div class="gmail-pane-content" style="box-sizing:border-box"><div class="gmail-field gmail-field-name-field-intro gmail-field-type-text-long gmail-field-label-hidden" style="box-sizing:border-box"><div class="gmail-field-items" style="box-sizing:border-box"><div class="gmail-field-item even" style="box-sizing:border-box"><p style="box-sizing:border-box;margin:0px 0px 10px"><strong style="box-sizing:border-box"><font size="4">Closing Date: January 6, 2020</font></strong></p><p style="box-sizing:border-box;margin:0px 0px 10px">This Research Opportunity will be filled depending on the availability of funds. All application materials must be submitted through USAJobs by 11:59 pm, US Eastern Standard Time, on the closing date.</p><p style="font-size:21px;box-sizing:border-box;margin:0px 0px 10px"><a href="https://www.usgs.gov/centers/mendenhall/when-and-how-apply" target="_blank" style="box-sizing:border-box;background:transparent;color:rgb(29,90,171)">How to Apply</a></p><p style="font-size:21px;box-sizing:border-box;margin:0px 0px 10px"><span style="font-size:14px">Tidal wetlands are key coastal ecosystems that provide a wealth of services to society, including recreation, bird and fish habitat, protection from coastal storms, and rapid storage of atmospheric carbon in soil. Under natural conditions, tidal exchange between wetlands and the coastal ocean sustains these important ecosystem services since dynamic biogeochemical responses result in wetlands that are responsive to rising seas through elevation gain (Gonneea et al. 2019) and transgression. A substantial portion of coastal wetlands, however, have managed hydrology, and their management conditions and histories have important consequences for the carbon cycle processes that build elevation through soil formation, and thus for resilience to accelerating sea-level rise. Tidal restrictions and other managed coastal hydrology, including dikes, tide gates, road and railroad berms or culverts, water control structures, and ditches, alter both sea and aquifer elevations and disrupt the dynamic elevation response of fresh and saline coastal wetlands. In the U.S., we and our colleagues have estimated that there are ~0.48 million hectares of restricted/impounded wetlands, and ~0.24 million hectares of drained former wetlands (Kroeger et al. 2017; Crooks et al. 2018; Fargione et al. 2018). </span></p></div></div></div></div></div><div class="gmail-panel-pane gmail-pane-entity-field gmail-pane-node-body" style="box-sizing:border-box;color:rgb(51,51,51);font-family:"Source Sans Pro",sans-serif;font-size:14px"><div class="gmail-pane-content" style="box-sizing:border-box"><div class="gmail-field gmail-field-name-body gmail-field-type-text-with-summary gmail-field-label-hidden" style="box-sizing:border-box"><div class="gmail-field-items" style="box-sizing:border-box"><div class="gmail-field-item even" style="box-sizing:border-box"><div class="gmail-tex2jax" style="box-sizing:border-box"><p style="box-sizing:border-box;margin:0px 0px 10px">Related research indicates that alterations of wetland hydrology result in changes in water level, period and frequency of soil inundation, water salinity and chemistry, vegetation cover and productivity, habitat quality, soil carbon storage and elevation trajectory. When coastal wetlands are impounded, biogeochemical conditions favor the production of methane, a potent greenhouse gas, while the rate of elevation gain is diminished (Kroeger, et al. 2017, Gonneea et al. in prep.). Where wetlands are drained, enhanced aerobic respiration drives massive loss of soil carbon, as emitted carbon dioxide (IPCC 2013), driving rapid loss of soil elevation. As a result, under a range of widespread conditions, managed coastal landscapes have both impaired resilience to sea-level rise and diminished habitat value, while they emit substantial anthropogenic greenhouse gas. Finally, the same barriers that impound or drain the wetlands also serve as barriers to migration, preventing transgression.</p><p style="box-sizing:border-box;margin:0px 0px 10px">Primary hypotheses are that restoration of saline, tidal flows in these managed wetlands will reduce greenhouse gas emissions, while restoring natural soil accretion, hazard protection, carbon storage, and ecosystem conditions. However, data and knowledge on responses to management and to environmental change remain limited, hampering our ability to predict the future condition of managed wetlands. Yet, federal agencies, including the Fish & Wildlife Service and National Park Service, as well as state and local governments, and other entities that manage impounded or drained wetlands, are increasingly facing decisions and requesting guidance related to elevation and habitat change under accelerating relative sea-level rise, as well as information on greenhouse management potential in coastal ecosystems. Research at the USGS Woods Hole Science Center has focused on broadly characterizing the consequences of a range of management actions in coastal wetlands, and on developing data and tools to guide and inform decisions based on consideration of habitat, elevation resilience, change in coastal hazards, and greenhouse gas management potential.</p><p style="box-sizing:border-box;margin:0px 0px 10px">We seek a postdoctoral fellow to conduct basic and applied research that addresses the consequences of management actions in coastal wetlands, in the context of accelerating sea level rise. Following are examples of relevant questions that the project might address, though other topics may be within the scope of interest:</p><ul style="box-sizing:border-box;margin-top:0px;margin-bottom:10px"><li style="box-sizing:border-box"><p style="box-sizing:border-box;margin:0px 0px 10px">How do managed wetlands respond to sea-level rise? </p></li><li style="box-sizing:border-box"><p style="box-sizing:border-box;margin:0px 0px 10px">How does the interaction of sea-level rise with groundwater drive changes in vegetation, elevation, biogeochemistry, and resilience?</p></li><li style="box-sizing:border-box"><p style="box-sizing:border-box;margin:0px 0px 10px">How does altered tidal hydrology associated with diking and impoundment or drainage alter biogeochemical processes that drive soil accretion and greenhouse gas emissions? </p></li><li style="box-sizing:border-box"><p style="box-sizing:border-box;margin:0px 0px 10px">What are the key drivers of soil carbon and gas flux rates, and can responses of those drivers to hydrological management predict feedbacks on climate? </p></li><li style="box-sizing:border-box"><p style="box-sizing:border-box;margin:0px 0px 10px">How do interactions of sea level rise and hydrological management predict wetland persistence, change in coastal hazards, or habitat change?</p></li><li style="box-sizing:border-box"><p style="box-sizing:border-box;margin:0px 0px 10px">What are the trajectories of change in response to restoration, and can they be predicted? </p></li><li style="box-sizing:border-box"><p style="box-sizing:border-box;margin:0px 0px 10px">What are the key drivers that must be considered in new predictive models for a range of sea-level and management change scenarios?</p></li></ul><p style="box-sizing:border-box;margin:0px 0px 10px"><br></p></div></div></div></div></div></div><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div style="font-family:Helvetica;font-size:12px;margin:0px">







<p>Meagan Eagle Gonneea, PhD<br>Research Scientist<br>USGS Woods Hole Coastal and Marine Science Center<br>384 Woods Hole Road<br>Woods Hole, MA 02543<br>(508) 457-2280<br>m: (774) 810-0538<br>Office: Gosnold 25<br></p>





</div></div></div></div></div></div></div></div></div>