<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<font size="+1"><font face="Calibri"><a class="moz-txt-link-freetext" href="http://www.neoninc.org/jobs/AOPStaffScientist2014">http://www.neoninc.org/jobs/AOPStaffScientist2014</a></font></font><br>
<br>
<p style="margin: 0px; padding: 2px 0px 15px; color: rgb(0, 0, 0);
line-height: 1.5em; font-family: arial; font-size: 12px;
font-style: normal; font-variant: normal; font-weight: normal;
letter-spacing: normal; orphans: auto; text-align: start;
text-indent: 0px; text-transform: none; white-space: normal;
widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
background-color: rgb(220, 220, 220);"><b style="margin: 0px;
padding: 0px;"><u style="margin: 0px; padding: 0px;">Overview</u></b><br
style="margin: 0px; padding: 0px;">
The National Ecological Observatory Network (NEON) is a $430
million dollar observatory project dedicated to understanding how
changes in climate, land use and invasive species impact ecology.
For the next three decades NEON will collect a comprehensive range
of ecological data on a continental scale across 20 eco-climatic
domains representing US ecosystems. NEON will use cutting edge
technology including an airborne observation platform that will
capture images of regional landscapes and vegetation; mobile,
re-locatable, and fixed data collection sites with automated
ground sensors to monitor soil and atmosphere; and trained field
crews who will observe and sample populations of diverse organisms
and collect soil and water data. A leading edge
cyber-infrastructure will calibrate, store and publish this
information. The Observatory will grow to 300+ personnel and will
be the first of its kind designed to detect and enable forecasting
of ecological change at continental scales.</p>
<p style="margin: 0px; padding: 2px 0px 15px; color: rgb(0, 0, 0);
line-height: 1.5em; font-family: arial; font-size: 12px;
font-style: normal; font-variant: normal; font-weight: normal;
letter-spacing: normal; orphans: auto; text-align: start;
text-indent: 0px; text-transform: none; white-space: normal;
widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
background-color: rgb(220, 220, 220);"><b style="margin: 0px;
padding: 0px;"><u style="margin: 0px; padding: 0px;">Summary:</u></b><br
style="margin: 0px; padding: 0px;">
The AOP Algorithm Scientist will be a member of the AOP science
team contributing to the development and generation of data
products developed from data acquired from the AOP remote sensing
platform and released by NEON to the community. This collaborative
effort requires a broadly-trained scientist well-versed in and
eager to learn the breadth of NEON scientific efforts, since AOP
works with the NEON’s science, cyberinfrastructure, and education
teams, as well as the external community, to define and create the
data products and manage their lifecycle. The AOP Algorithm
Scientist will develop sensor data processing algorithms,
software, and validation approaches to produce high quality
science data products from the airborne imaging spectrometer,
waveform-LiDAR, and high-resolution digital camera data, as well
as support initial processing of data. The Staff Scientist is also
directly involved in airborne operations and will serve as liaison
with NEON’s Cyber Infrastructure product team and will be an
active member of the Remote Sensing Integrated Product Team co-led
by the Data Products group.</p>
<p style="margin: 0px; padding: 2px 0px 15px; color: rgb(0, 0, 0);
line-height: 1.5em; font-family: arial; font-size: 12px;
font-style: normal; font-variant: normal; font-weight: normal;
letter-spacing: normal; orphans: auto; text-align: start;
text-indent: 0px; text-transform: none; white-space: normal;
widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
background-color: rgb(220, 220, 220);"><b style="margin: 0px;
padding: 0px;"><u style="margin: 0px; padding: 0px;">Essential
Duties and Responsibilities:</u></b><br style="margin: 0px;
padding: 0px;">
• Design, develop, and implement scientific algorithms and
documentation (Algorithm Theoretical Baseline Documents) for
application of airborne imaging spectroscopy, discrete and
waveform LiDAR, and high-resolution digital camera imagery to
terrestrial ecology.<br style="margin: 0px; padding: 0px;">
• Work with the Cyber Infrastructure product team within NEON to
implement AOP processing algorithms into the production segment.<br
style="margin: 0px; padding: 0px;">
• Automate and/or improve processing software and algorithms.<br
style="margin: 0px; padding: 0px;">
• Contribute to developing the science rationale for data
products, developing and prototyping algorithms for their
generation, and engaging all stakeholders in vetting the produced
materials. The incumbent will help to define NEON’s strategy to
scale ecological data across multiple temporal and spatial scales
in support of continental-scale ecological science.<br
style="margin: 0px; padding: 0px;">
• Run existing software and algorithms to generate Level 1
airborne remote sensing data products.<br style="margin: 0px;
padding: 0px;">
• Perform quality control on data products to ensure their use by
the science community.<br style="margin: 0px; padding: 0px;">
• Develop uncertainty estimates and quality flags for remote
sensing data products.<br style="margin: 0px; padding: 0px;">
• Engage the user community through meetings, workshops, and
working groups, to ensure the utility and veracity of NEON data
products.<br style="margin: 0px; padding: 0px;">
• Follow NEON and site specific, safety and environmental
protection requirements, policy and procedures.</p>
<p style="margin: 0px; padding: 2px 0px 15px; color: rgb(0, 0, 0);
line-height: 1.5em; font-family: arial; font-size: 12px;
font-style: normal; font-variant: normal; font-weight: normal;
letter-spacing: normal; orphans: auto; text-align: start;
text-indent: 0px; text-transform: none; white-space: normal;
widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
background-color: rgb(220, 220, 220);"><b style="margin: 0px;
padding: 0px;"><u style="margin: 0px; padding: 0px;">Required
Education, Experience, Knowledge, Skills:</u></b><br
style="margin: 0px; padding: 0px;">
• Ph.D. in physical sciences, computational sciences, remote
sensing, applied mathematics or related science field, or an MS in
one of these areas and equivalent experience.<br style="margin:
0px; padding: 0px;">
• Postdoctoral experience is preferred, but not required.<br
style="margin: 0px; padding: 0px;">
• Application of remote sensing theory to biological and/or
physical systems.<br style="margin: 0px; padding: 0px;">
• Knowledge of remote sensing programming languages and
visualization tools, including at least one of the following: IDL,
MatLab, Python, NCL, ENVI, or R.<br style="margin: 0px; padding:
0px;">
• Experience building novel algorithms in support of LiDAR and/or
hyperspectral data processing.<br style="margin: 0px; padding:
0px;">
• Experience with atmospheric correction of imaging spectrometer
data using ATCOR or similar processing programs.<br style="margin:
0px; padding: 0px;">
• Experience integrating remote sensing data with a variety of
ground-based data, including measurements of
biophysical/biochemical variables.<br style="margin: 0px; padding:
0px;">
• Effective oral and written communication skills.<br
style="margin: 0px; padding: 0px;">
• Demonstrated ability to write technical and scientific
documents.</p>
<p style="margin: 0px; padding: 2px 0px 15px; color: rgb(0, 0, 0);
line-height: 1.5em; font-family: arial; font-size: 12px;
font-style: normal; font-variant: normal; font-weight: normal;
letter-spacing: normal; orphans: auto; text-align: start;
text-indent: 0px; text-transform: none; white-space: normal;
widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
background-color: rgb(220, 220, 220);"><b style="margin: 0px;
padding: 0px;"><u style="margin: 0px; padding: 0px;">Preferred
Education, Experience, Knowledge, Skills:</u></b><br
style="margin: 0px; padding: 0px;">
• Familiarity with a variety of remote sensing platforms, e.g.
AVIRIS, MODIS, LandSAT, ICESat.<br style="margin: 0px; padding:
0px;">
• Familiarity with data processing workflows in a production
environment.<br style="margin: 0px; padding: 0px;">
• Programming experience (C/C++, Java, Python, etc.).<br
style="margin: 0px; padding: 0px;">
• Demonstrated skill in developing scientific algorithm design and
development for processing of large remote sensing datasets.<br
style="margin: 0px; padding: 0px;">
• Knowledge of data analysis and statistical methods for
processing remote sensing data.<br style="margin: 0px; padding:
0px;">
• Knowledge of imaging spectrometers, LiDAR, high resolution
imagery and the application of these remote sensing technologies
to terrestrial ecology.<br style="margin: 0px; padding: 0px;">
• Knowledge of optical pointing models and application of standard
geolocation techniques including the use of geodetic datums.<br
style="margin: 0px; padding: 0px;">
• Experience working in a collaborative scientific or engineering
enterprise.<br style="margin: 0px; padding: 0px;">
• Ability to work independently and as part of an active science
team.</p>
<p style="margin: 0px; padding: 2px 0px 15px; color: rgb(0, 0, 0);
line-height: 1.5em; font-family: arial; font-size: 12px;
font-style: normal; font-variant: normal; font-weight: normal;
letter-spacing: normal; orphans: auto; text-align: start;
text-indent: 0px; text-transform: none; white-space: normal;
widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
background-color: rgb(220, 220, 220);">Must have permanent
authorization for US employment.</p>
<span style="color: rgb(0, 0, 0); font-family: arial; font-size:
12px; font-style: normal; font-variant: normal; font-weight:
normal; letter-spacing: normal; line-height: normal; orphans:
auto; text-align: start; text-indent: 0px; text-transform: none;
white-space: normal; widows: auto; word-spacing: 0px;
-webkit-text-stroke-width: 0px; display: inline !important; float:
none; background-color: rgb(220, 220, 220);">- See more at:
<a class="moz-txt-link-freetext" href="http://www.neoninc.org/jobs/AOPStaffScientist2014#sthash.BLTrJUMF.dpuf">http://www.neoninc.org/jobs/AOPStaffScientist2014#sthash.BLTrJUMF.dpuf</a></span><br>
</body>
</html>