<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:#954F72;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
p.Default, li.Default, div.Default
        {mso-style-name:Default;
        margin:0cm;
        margin-bottom:.0001pt;
        text-autospace:none;
        font-size:12.0pt;
        font-family:"Calibri",sans-serif;
        color:black;
        mso-fareast-language:EN-US;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:EN-US;}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-CA" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Dear Colleagues,<o:p></o:p></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Proposals for the 2017/2018 Co-ordinated Incoherent Scatter Observation Days (also known as ISR World Days) are due by 12th June 2017. Written proposals, outlining specific research
needs using the World Day observations, are requested. These proposals should be submitted via e-mail to Ian McCrea (<a href="mailto:ian.mccrea@stfc.ac.uk" target="_blank">ian.mccrea@stfc.ac.uk</a>) and Emma Spanswick (<a href="mailto:elspansw@ucalgary.ca" target="_blank">elspansw@ucalgary.ca</a>).<o:p></o:p></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Some notes about the proposal procedure are included below this email.<o:p></o:p></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">The URSI Incoherent Scatter working Group (ISWG) will have its planning meeting at this year’s CEDAR meeting. This planning meeting is for the ISWG and UAF staffs to review all
the submitted proposals and determine how the global network of ISRs can best satisfy the approved requests. The proposer's presence during this discussion is not required but can be beneficial. This year we are also at the conclusion of our current three
year Chair cycle and thus are seeking nominations for a new vice-Chair. If you are unable to attend CEDAR this year but wish to nominate someone, please send nominations to via email to Ian McCrea (<a href="mailto:ian.mccrea@stfc.ac.uk" target="_blank">ian.mccrea@stfc.ac.uk</a>)
and Emma Spanswick (<a href="mailto:elspansw@ucalgary.ca" target="_blank">elspansw@ucalgary.ca</a>) in advance of the CEDAR meeting.
<o:p></o:p></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> With kind regards<o:p></o:p></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> Emma Spanswick<o:p></o:p></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> Deadline: 12th June 2017.<o:p></o:p></p>
<p class="MsoNormal"><i><span style="font-size:10.0pt;mso-fareast-language:EN-CA">--------------------------------------------------------------------------<o:p></o:p></span></i></p>
<p class="Default"><o:p> </o:p></p>
<p class="Default"><b><span style="font-size:14.0pt">Requesting Incoherent Scatter World Day Runs
</span></b><span style="font-size:14.0pt"><o:p></o:p></span></p>
<p class="Default"><b><span style="font-size:9.5pt;font-family:"Arial",sans-serif">Introduction
</span></b><span style="font-size:9.5pt;font-family:"Arial",sans-serif"><o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">The global network of incoherent scatter radars (ISR) makes observations of fundamental properties of the upper atmosphere, ionosphere, and magnetosphere. Use of these radars is
open to all qualified scientists, and the data are freely disseminated to a broad community of users for research and in the development and validation of models and instrumentation.
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">Radar observing time is allocated by one of two routes:
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif"><o:p> </o:p></span></p>
<p class="Default"><span style="font-size:9.5pt">• </span><span style="font-size:9.5pt;font-family:"Arial",sans-serif">Formal or informal applications from individuals or groups to the institutions responsible for operating each of the various facilities, and
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt">• </span><span style="font-size:9.5pt;font-family:"Arial",sans-serif">World Day observations, coordinated through a plan developed annually by the URSI Incoherent Scatter Working Group (ISWG).
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif"><o:p> </o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">This document addresses the second of these allocation routes.
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif"><o:p> </o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">World Day runs are typically carried out four or five times per year. Normally, they are conducted as coordinated, continuous and simultaneous experiments, involving all the incoherent
scatter radars in the global network. Occasionally, however, a run will address only a subset of the facilities (e.g. high-latitude radars only, or low-latitude radars only). World Day runs are multi-day experiments, typically two to five days in length, though
longer intervals are possible. In a typical year, World Day experiments will comprise between 20 and 25 days of observations in total.
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">If a particular set of geophysical conditions is required, it can be possible to embed the World Day run within a longer “alert window”, meaning that the multi-day continuous experiment
only starts once the correct conditions are achieved. Once the observations start, however, they should run continuously for their full allocated time.
<o:p></o:p></span></p>
<p class="Default"><b><span style="font-size:9.5pt;font-family:"Arial",sans-serif"><o:p> </o:p></span></b></p>
<p class="Default"><b><span style="font-size:9.5pt;font-family:"Arial",sans-serif">The Application Process
</span></b><span style="font-size:9.5pt;font-family:"Arial",sans-serif"><o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">The high demand for ISR observations, in particular for extended multi-radar operations, requires certain procedures to ensure that the highest priority scientific research is addressed
by the coordinated World Day schedule, within the limits imposed by the cost and technical restrictions of ISR operations. In order to be successful, a World Day proposal has to demonstrate that it genuinely addresses a topic of interest to a wide science
community and that it has a real need for distributed data from multiple facilities.
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">The process begins with the development of a baseline schedule of general-purpose experiments that fall within the operating constraints of the radars.
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif"><o:p> </o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">An experimenter having a need for extended duration and/or multiple facility ISR experiments should first review the schedules and archives of the various facilities carefully,
to determine whether their observational requirements can be met by observations which have already been made or scheduled. If not, and if the experiment cannot be easily accommodated through requests to individual radar facilities, a proposal for World Day
operations should be submitted to the Chairperson or Deputy Chairperson of the ISWG. Calls for such proposals are made annually, in May of each year, with applications due in the second half of June.
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">If you are unsure whether or not your experiment requires the submission of a World Day proposal, please contact the ISWG Chairperson, Deputy Chairperson, or any staff member of
an ISR facility. The ISWG Chair will initiate an interactive review process, enabling experimenters to provide additional input or arguments as needed. Every effort will be made to accommodate all requests.
<o:p></o:p></span></p>
<p class="Default"><span style="font-size:9.5pt;font-family:"Arial",sans-serif">The ISWG typically meets each year at, or during, the annual CEDAR meeting, to review all the proposals,</span><span style="font-size:9.5pt">
</span><span style="font-size:9.5pt;font-family:"Arial",sans-serif">with the aid of external reviewers solicited by the Chair as appropriate. This group will determine how the global network of ISRs can best satisfy the approved observational requests and ensure
that the experimental configurations, numbers of radars involved, time distribution and total time allocated are appropriate for the specified science goals. The proposer's presence during this discussion is not required, though proposers who happen to be
at the CEDAR meeting are encouraged to take part in the discussion. <o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></b></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">Example Application
</span></b><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">Below is an example of a successful World Day proposal from 2015 (by kind permission of the proposer). This run was awarded five days of
continuous observations in February 2016, during the much longer multi-instrument LWCYCLE campaign mentioned in the proposal.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">The application satisfies all of the core requirements for a World Day case, which should include at least the following:
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• An experiment title;
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• Names and contact details of the proposer and any co-investigators;
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• Details of a contact person to co-ordinate with the ISRs (if different from the proposer);
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• A summary of the key science objectives;
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• Required conditions (solar/geomagnetic activity, season of the year, phase of the moon, specific dates, if applicable);
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• List of facilities (stating which are required and which are optional);
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• The required experiment mode (plasma parameters to be measured, pointing directions or scan parameters, time resolutions, specific modes
if known) for each radar; <o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• A justification of why simultaneous multi-point data are needed;
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• A justification of why the science aims cannot be achieved by other data (existing or planned);
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• A description of the existing experiment which comes closest to achieving the aims of the proposed study;
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• A list of participating scientists and their duties;
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• A list of personnel with whom the idea has already been discussed;
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">• A more detailed description and justification, with appropriate references.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">After the ISWG meeting
</span></b><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">Regardless of whether your application is successful, you will be notified of the outcome within a week or two after the CEDAR meeting.
The feedback will tell you how much time has been awarded on which facilities and will provide you with the details of the individual facility operators, whom you should contact to discuss the details of your run.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">If your proposal has been scheduled for a World Day run, we ask that you begin contacting the facilities
<b>no later than three months </b>prior to your experiment. The operators will normally be very helpful in liaising with you to find the best radar experiment to satisfy your science goals.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">If your proposal is embedded within a longer alert period, you will need to decide
<b>three days beforehand </b>on a nominal date for the start of the run and inform the facilities involved. Shorter lead times may be possible for some facilities, but operations requested less than three days from the projected start date cannot be guaranteed.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">Once your experiment has run, and the results have been analysed and interpreted, it would be very useful for the ISWG to have some feedback
on how the process has gone. We ask all proposers who have been awarded time to write a short one-page summary of their World Day experiment, including any “lessons learned” for discussion at the following ISWG meeting. Any such proposers attending the CEDAR
meeting are encouraged to attend the ISWG session to report on their results. <o:p>
</o:p></span></p>
<p class="MsoNormal"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black">Anybody with questions about this process should feel free to consult with the ISWG Chairperson, Deputy Chairperson, or any either facility staff member, for clarification
of any issues which may be unclear.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="font-size:14.0pt;font-family:"Arial",sans-serif;color:black">Example ISR application from 2015
</span></b><span style="font-size:14.0pt;font-family:"Arial",sans-serif;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Title:
</span></b><span style="color:black">Gravity wave propagation in the mesosphere and thermosphere
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Principle Investigator:
</span></b><span style="color:black">Andrew J. Kavanagh, British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB30ET, Email:
</span><span style="color:blue">andkav@bas.ac.uk <o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Co-Investigators:
</span></b><span style="color:black">Tracy Moffat-Griffin (BAS); Adrian Grocott (Lancaster University); Lisa Baddeley (UNIS); Dag Lorentzen (UNIS), Noora Partamies (UNIS);
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Point Person:
</span></b><span style="color:black">Andrew J. Kavanagh <o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Key Objectives:
</span></b><span style="color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom:4.05pt;text-autospace:none"><span style="color:black">• To measure the electron density and temperature profiles in the mesosphere and thermosphere during the German GW-LCYCLE.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="color:black">• To extract gravity wave parameters in the mesosphere and thermosphere for comparison with lower atmosphere and SuperDARN observations.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="color:black"><o:p> </o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Background Conditions:
</span></b><span style="color:black">Preferably quiet geomagnetic conditions are preferred to improve the ability to extract gravity wave parameters from waves forced from the lower atmosphere either by direct propagation or secondary generation. Clear skies
are preferred to allow optical support <o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">UAFs Needed:
</span></b><span style="color:black">All high latitude systems, several days of operations required to overlap the GW-LCYCLE campaign.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Primary parameters to Measure:
</span></b><span style="color:black">Local near vertical profiles of Ne, Te, and Vi from the mesosphere to the F-region with high time resolution.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Secondary parameters:
</span></b><span style="color:black">Off vertical, multi direction measurements in the RISRs to extract horizontal gravity wave parameters (e.g. Nicolls and Heinselman, 2007)
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Need for simultaneous data:
</span></b><span style="color:black">an opportunity to examine the large scale gravity wave field at various longitudes
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Existing Data Meeting Objectives:
</span></b><span style="color:black">None completely. Although past data sets exist from which gravity wave data can be extracted no long time series were taken at the same time as the GW-LCYCLE campaign.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Existing Data Closest to Objectives:
</span></b><span style="color:black">The closest was the world-day run from February 2015 but lacked the simultaneous lower altitude data. It would be very interesting if a stratospheric warming were to occur in 2016 such that we could compare the observations
between the two years. <o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Participant Duties:
</span></b><span style="color:black">Kavanagh will coordinate the experiments to ensure proper modes are used at each facility and will liaise with the GW-LCYCLE campaign. Grocott will coordinate analysis of simultaneous supper atmosphere measurements from
SuperDARN (e.g. Grocott et al. 2013). Other Co-Is will work on data analysis from the radars and other support instruments.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Facility Personnel Contacted:
</span></b><span style="color:black">None. <o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><b><span style="color:black">Further Details and Background:
</span></b><span style="color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="color:black">The GW-LCYCLE programme is a German campaign to study gravity wave excitation, propagation and dissipation as a coupling mechanism between the troposphere and middle atmosphere (~10
– 120 km). From December 2015 to March 2016 they will be run a major observational campaign deploying three instrumented aircraft, employing observations from distributed ground-based LIDARs and radars and increased launches of radiosondes (3-hourly) from
3 sites (Andoya, ESRANGE, and Sodankylä). This region is a hot-spot of gravity wave activity in the stratosphere and examination of gravity waves at different altitude will shed light on momentum and energy coupling.
<o:p></o:p></span></p>
<p class="MsoNormal" style="page-break-before:always;text-autospace:none"><span style="color:black">The inclusion of the ISR in Europe, Greenland and North America will provide a means of simultaneously examining the propagation of gravity waves from the middle
atmosphere into the thermosphere. It is a difficult proposition to identify individual wave paths from the lower atmosphere all the way to the mesosphere and beyond due to the effects of filtering and ducting of waves. Recent observations made with the DLR
mobile LIDAR show that there are some possible cases but mostly the mesosphere becomes a complex ‘soup’ of structures, not least because of the wave breaking that occurs. With the ISR network (and other diagnostics) we can concentrate on what happens to those
waves that propagate (e.g. Livneh et al., 2007), or generate secondary waves (e.g. Vadas & Liu, 2009) into the thermosphere. We aim to:
<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom:8.1pt;text-autospace:none"><span style="color:black">• Identify secondary generation of waves
<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom:8.1pt;text-autospace:none"><span style="color:black">• Compare GW activity in the ISR with observations of TID in SuperDARN radars
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="color:black">• Link wave breaking or propagation to lower atmosphere measurements where possible
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="color:black"><o:p> </o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="color:black">The spread of ISR also presents opportunities for comparisons of waves within and without the polar vortex. For those sites (such as the ESR) with optical measurements of gravity waves
(e.g OH imaging) we will be able to compare the horizontal structure with the vertical wave structure.
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="color:black">Good techniques have been developed to extract gravity wave parameters from ISR data (e.g. Nicolls & Heinselman, 2007; Nicolls et al, 2010; Vlasov et al., 2011). These observations will
provide a means of testing the theoretical predictions of the wave propagations made by Vadas & Fritts (2004, 2005), Vadas (2007) and Sun et al. (2007) amongst others. We will be able to examine the thermospheric role played by gravity waves generated via
forcing from below compared with those generated in-situ. <o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="color:black">References:
<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><i><span style="font-size:10.0pt;color:black">Grocott, A., Hosokawa, K., Ishida, et al. (2013). Characteristics of medium-scale traveling ionospheric disturbances observed near the Antarctic Peninsula by HF radar.
Geophys. Res. Lett. , 5830-5841. </span></i><span style="font-size:10.0pt;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><i><span style="font-size:10.0pt;color:black">Livneh, D. J., Seker, I., Djuth, F. T., & Matthews, J. D. (2007). Continuous quasiperiodic thermospheric waves over aricebo. J. Geophys. Res. , 112, A07313.
</span></i><span style="font-size:10.0pt;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><i><span style="font-size:10.0pt;color:black">Nicolls, M. J., and C. J. Heinselman (2007), Three-dimensional measurements of traveling ionospheric disturbances with the Poker Flat Incoherent Scatter Radar, Geophys.
Res. Lett., 34, L21104, doi:</span></i><i><span style="font-size:10.0pt;color:blue">10.1029/2007GL031506</span></i><i><span style="font-size:10.0pt;color:black">.
</span></i><span style="font-size:10.0pt;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><i><span style="font-size:10.0pt;color:black">Nicolls, M. J., R. H. Varney, S. L. Vadas, P. A. Stamus, C. J. Heinselman, R. B. Cosgrove, and M. C. Kelley (2010), Influence of an inertia-gravity wave on mesospheric
dynamics: A case study with the Poker Flat Incoherent Scatter Radar, J. Geophys. Res., 115, D00N02, doi:</span></i><i><span style="font-size:10.0pt;color:blue">10.1029/2010JD014042</span></i><i><span style="font-size:10.0pt;color:black">.
</span></i><span style="font-size:10.0pt;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><i><span style="font-size:10.0pt;color:black">Sun, L., W. Wan, F. Ding, and T. Ma, Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model, Ann. Geophys., 25,
1979–1986, 2007. </span></i><span style="font-size:10.0pt;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><i><span style="font-size:10.0pt;color:black">Vadas, S. L., Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys.
Res.,112, A06305, doi:10.1029/2006JA011845, 2007. </span></i><span style="font-size:10.0pt;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><i><span style="font-size:10.0pt;color:black">Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves arising from mesoscale convective complexes, J. Atmos. Sol.-Terr. Phys.,66, 781–804, 2004.
</span></i><span style="font-size:10.0pt;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><i><span style="font-size:10.0pt;color:black">Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res., 110, D15103,
doi:10.1029/2004JD005574, 2005 </span></i><span style="font-size:10.0pt;color:black"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><i><span style="font-size:10.0pt;color:black">Vadas, S. L., & Liu, H. -L. (2009). Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity
waves. J. Geophys. res , 114, A10310. </span></i><span style="font-size:10.0pt;color:black"><o:p></o:p></span></p>
<p class="MsoNormal"><i><span style="font-size:10.0pt;color:black">Vlasov, A., Kauristie, K., van de Kamp, M., Luntama, J.-P., and Pogoreltsev, A.: A study of Traveling Ionospheric Disturbances and Atmospheric Gravity Waves using EISCAT Svalbard Radar IPY-data,
Ann. Geophys., 29, 2101-2116, doi:10.5194/angeo-29-2101-2011, 2011.</span></i><span style="font-size:9.5pt;font-family:"Arial",sans-serif;color:black"><o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</body>
</html>